
CSCI3160: Regular Exercise Set 7

Prepared by Yufei Tao

Problem 1. Let s and t be strings with lengths m and n respectively, satisfying the condition that
s[m] = t[n]. In the lecture, we proved:

edit(s, t) = min

edit(s[1..m− 1], t[1..n− 1])
1 + edit(s, t[1..n− 1])
1 + edit(s[1..m− 1], t).

Prove: the above result can be simplified into: edit(s, t) = edit(s[1..m− 1], t[1..n− 1]).
(Hint: you can leverage the above result in your proof.)

Solution. One way to convert s[1..m − 1] to t[1..n − 1] is to first insert s[m] and then perform
edit(s, t[1..n−1]) operations to obtain t. This shows edit(s[1..m−1], t[1..n−1]) ≤ 1+edit(s, t[1..n−1]).
A similar argument shows edit(s[1..m− 1], t[1..n− 1]) ≤ 1 + edit(s[1..m− 1], t).

Problem 2*. In the class we proved the “grand lemma” only for the case where s[m] = t[n]. In
this problem, we will cover the other case where s[m] 6= t[n]. Let s and t be strings with lengths m
and n respectively, satisfying the condition that s[m] 6= t[n]. Prove:

edit(s, t) = min

1 + edit(s[1..m− 1], t[1..n− 1])
1 + edit(s, t[1..n− 1])
1 + edit(s[1..m− 1], t).

Solution. Let Σ∗ be an optimal sequence of operations that turns s into t. We claim that at least
one of the following situations will occur:

• Situation 1: there exists an operation sequence of length |Σ∗| − 1 that turns s[1..m− 1] into
t[1..n− 1].

• Situation 2: there exists an operation sequence of length |Σ∗| − 1 that turns s into t[1..n− 1].

• Situation 3: there exists an operation sequence of length |Σ∗| − 1 that turns s[1..m− 1] into t.

This claim will imply the equation we are trying to prove.

To prove the claim we distinguish three possibilities:

1. The last character of s survives till the end of Σ∗ and matches t[n]. In this case, Σ∗ must
contain a single operation that concerns the last character of s; furthermore, that operation
must be a substitution that replaces the character with t[n]. Removing the operation gives a
sequence for Situation 1.

2. The last character of s survives till the end, and but does not match t[n]. In this case, Σ∗

must contain an insertion that inserts the character — say c — eventually used to match t[n].
Furthermore, that insertion is the only operation that concerns c. Removing the operation
gives a sequence for Situation 2.

3. The last character of s is deleted. In this case, Σ∗ must contain a deletion that deletes the
last character of s. Furthermore, that deletion is the only operation concerning that character.
Removing the operation gives a sequence for Situation 3.

1

Problem 3. Let s be a sequence of n letters. Design an O(n)-time algorithm to decide whether it
is possible to delete n− 6 letters from s so that the remaining sequence of 6 letters reads “secret”.
For example, the answer is yes for “assdfecfasrdfest”, but no for “assdfecfaserdfst”.

Solution. Define string t = “secret”. For each i ∈ [1, n] and j ∈ [1, 6], define deledit(i, j) to be
the length of the shortest sequence of deletions that turns s[1..i] into t[1..j]; if no such sequences
exist, define deledit(i, j) = ∞. Specially, define deledit(0, 0) = 0, deledit(0, j) = ∞ for any j ≥ 1,
and deledit(i, 0) = i for any i ≥ 1.

Consider i ≥ 1, j ≥ 1. In general, if s[i] = t[j], we have:

deledit(i, j) = min

{
deledit(s[1..i− 1], t[1..j − 1])
1 + deledit(s[1..i− 1], j).

whereas if s[i] 6= t[j], we have:

deledit(i, j) = 1 + deledit(s[1..i− 1], j).

Note that there are O(n) choices for i and O(1) choices for j. Dynamic programming therefore can
be used to evaluate deledit(n, 6) in O(n) time.

Problem 4 (Longest Common Subsequence; Section 15.4 of the Textbook). Let σ and s
be two strings such that |σ| ≤ |s|. We call σ a subsequence of s if it is possible to turn s into σ by
repeatedly deleting letters. For example, “hell” is a subsequence of “asdfhljeljlasfdf” but “hello” is
not and neither is “hlle”.

You are given two strings s, t with lengths m and n, respectively. Give an O(mn)-time algorithm
to find a common subsequence of s and t that has the greatest length. For example, if s = “algorithm”
and t = “logarithmic”, a possible output can be “grithm”.

Solution. For each i ∈ [1, n] and j ∈ [1,m], define lcs(i, j) to be the greatest length of common
subsequence of s[1..i] and t[1..j]. Specially, define deledit(0, 0) = 0, deledit(0, j) = 0 for any j ≥ 1,
and deledit(i, 0) = 0 for any i ≥ 1.

Consider i ≥ 1, j ≥ 1. In general, if s[i] = t[j], we have:

lcs(i, j) = max

1 + lcs(i− 1, j − 1)
lcs(i− 1, j)
lcs(i, j − 1).

whereas if s[i] 6= t[j], we have:

lcs(i, j) = max

lcs(i− 1, j − 1)
lcs(i− 1, j)
lcs(i, j − 1).

There are O(m) choices for i and O(n) choices for j. Dynamic programming therefore can be used
to evaluate lcs(m,n) in O(mn) time.

Remark: You can actually simplify the above recursive functions — you may refer to the textbook
for details. But the simplification will not affect the running time.

2

