
CSCI3160: Regular Exercise Set 6

Prepared by Yufei Tao

Problem 1*. Let A be an array of n integers. Define a function f(x) — where x ≥ 0 is an integer
— as follows:

f(x) =

{
0 if x = 0
maxx

i=1(A[i] + f(x− i)) otherwise

Consider the following algorithm for calculating f(x):

algorithm f(x)
1. if x = 0 then return 0
2. max = −∞
3. for i = 1 to x
4. v = A[i] + f(x− i)
5. if v > max then max = v
6. return max

Prove: the above algorithm takes Ω(2n) time to calculate f(n).

Problem 2. Consider once again Problem 1. Design an algorithm to calculate f(n) in O(n2) time.

Problem 3. Recall that, on the optimal BST problem, we have explained in the class how to
calculate optavg(1, n) using dynamic programming in O(n3) time where function optavg(a, b) is
recursively defined as

optavg(a, b) =

{
0 if a > b∑b

i=aW [i] + minb
r=a{optavg(a, r − 1) + optavg(r + 1, b)} otherwise

However, we have not yet explained how to build in an optimal BST. Describe an algorithm to do
so in O(n3) time (in fact, you can build the tree in O(n) time after having computed optavg(1, n),
but you will need to modify what we did in dynamic programming slightly).

Problem 4 (Rod-Cutting; Section 15.1 of the Textbook). Let A be an array of n integers.
Let us define an n-sum sequence as a sequence of integers x1, x2, ..., xt (where t can be any integer
at least 1) satisfying both conditions below:

• 1 ≤ xi ≤ n for all i ∈ [1, t]

•
∑t

i=1 xi = n.

Define the cost of the above n-sum sequence as
∑t

i=1A[xi]. Give an algorithm to produce an n-sum
sequence with the largest cost in O(n2) time.

1


