CSCI3160: Regular Exercise Set 5

Prepared by Yufei Tao

Problem 1. Let G = (V, E) be a connected undirected graph where every edge carries a positive integer weight. Divide V into arbitrary disjoint subsets $V_1, V_2, ..., V_t$ for some $t \ge 2$, namely, $V_i \cap V_j = \emptyset$ for any $1 \le i < j \le t$, and $\bigcup_{i=1}^t V_i = V$. Define an edge $\{u, v\}$ in E a cross edge if u and v are not in the same subset (i.e., there is no $i \in [1, t]$ satisfying $u \in V_i$ and $v \in V_i$). Prove: the lightest cross edge must belong to a minimum spanning tree (MST).

Solution. Immediate from the "cut property" proved in the Special Exercise List 4. Nevertheless, we give the whole proof below.

Let $e = \{u, v\}$ be the lightest cross edge. Without loss of generality, suppose that $u \in V_i$ and $j \in V_j$ for some distinct $i, j \in [1, t]$. Consider any MST T that does not contain e. We now add e to T to produce a cycle C. Walk on C by starting from u, and passing v as the next vertex, but stop as soon as we have crossed an edge e' that brings us back to a vertex on C that belongs to V_i . The edge e' must be a cross edge, and hence, must be at least as heavy as e. Deleting e' gives an MST that contains e.

Problem 2* (Kruskal's Algorithm). Let G = (V, E) be a connected undirected graph where every edge carries a positive integer weight. Prove that the following algorithm finds an MST of G correctly:

algorithm

- 1. $S = \emptyset$
- 2. while |S| < |V| 1
- 3. find the lightest edge $e \in E$ that does not introduce any cycle with the edges in S
- 4. add e to S
- 5. the edges in S now form an MST

Solution. Set n = |V| - 1. Let $e_1, ..., e_{n-1}$ be the edges picked by the algorithm. We claim that for any $k \in [1, n-1]$, there is an MST that uses $e_1, ..., e_k$. The lemma then follows from the claim at k = n - 1. The base case of k = 1 is obvious (we proved this in the class). Next, assuming correctness at k = x for some integer $x \ge 1$, we will prove the claim for k = x + 1.

Let T be an MST that includes $e_1, ..., e_x$. The existence of T is promised by the inductive assumption. If T contains e_{x+1} , we are done; the rest of the proof will focus on the case that e_{x+1} is not in T. Consider the graph $G' = (V, \{e_1, ..., e_x\})$. Denote by $G_1, ..., G_t$ the connected components (CC) of G'. Let us call an edge $e \in E$ a cross edge if it connects two vertices from different CCs.

Since e_{x+1} does not introduce any cycle with $e_1, ..., e_x$, we know that e_{x+1} must be a cross edge. Now add e_{x+1} into T, which gives rise to a cycle. By the same argument as in the solution to Problem 1, we know that the cycle must contain another cross edge e'. By the way e_{x+1} is chosen by the algorithm, we assert that the weight of e_{x+1} cannot be heavier than that of e'. Thus removing e' yields another MST; and this MST contains $e_1, ..., e_{x+1}$, as desired.

Problem 3. Consider Σ as an alphabet. Recall that a *code tree* on Σ as a binary tree T satisfying both conditions below:

• C_1 : Every leaf node of T is labeled with a distinct letter in Σ ; conversely, every letter in Σ is the label of a distinct leaf node in T.

• C_2 : For every internal node of T, its left edge (if exists) is labeled with 0, and its right edge (if exists) with 1.

Define an *encoding* as a function f that maps each letter $\sigma \in \Sigma$ to a non-empty bit string, which is called the *codeword* of σ . T produces an encoding where the code word of a letter $\sigma \in \Sigma$ can be obtained by concatenating the bit labels of the edges on the path from the root to the leaf σ . Prove:

1 10ve.

- The encoding produces by a code tree T is a prefix code.
- Every prefix code is produced by a code tree T.

Solution. <u>Proof of the first bullet</u>: Consider any distinct leaf nodes σ_1, σ_2 . Let u be their lowest common ancestor. That the bit strings of σ_1, σ_2 are different follows from the fact that the two edges of u carry different labels.

<u>Proof of the second bullet</u>: Let f be the encoding that corresponds to the prefix code that we are given. Define $S = \{f(\sigma) \mid \sigma \in \Sigma\}$, namely, S collects the codewords of all the letters in Σ . Grow a binary tree T as follows. At the beginning, T has a single leaf. Then, for each letter $\sigma \in \Sigma$, we add some nodes and edges to T (if necessary) as follows:

- Initially, set u to the root of T.
- Repeat the following until u is a leaf node:
 - Set ℓ to the level of u.
 - Descend to the left (or right) child v of u if the ℓ -th bit of $f(\sigma)$ is 0 (or 1, resp.). If v does not exist, create it in T, and label its edge with u using the bit 0 (or 1, resp.).
 - Set u to v.
- Mark the leaf node u with the letter σ .

The final T is a code tree of f.

Problem 4. Consider the alphabet $\Sigma = \{1, 2, ..., n\}$ for some integer $n \ge 1$. Suppose that the frequency of *i* is *strictly higher than* the frequency of i + 1, for any $i \in [1, n - 1]$. Prove: in an optimal prefix code, for any $i \in [1, n - 1]$, the codeword of *i* cannot be longer than that of i + 1.

Solution. If this is not true, then swapping the codewords of i and i + 1 reduces the average length.