CSCI3160: Regular Exercise Set 10

Prepared by Yufei Tao

Problem 1. Let G = (V, E) be a weighted directed graph where the edge weights are given by the function $w : E \to \mathbb{Z}$; there are no negative cycles in G. Recall that Johnson's algorithm adds a vertex v_{dummy} to G, and computes the shortest path distance $spdist(v_{dummy}, v)$ from v_{dummy} to every vertex. Then, the weight of each edge (u, v) is modified to:

$$w'(u, v) = w(u, v) + spdist(v_{dummy}, u) - spdist(v_{dummy}, v).$$

Prove: $w'(u, v) \ge 0$.

Problem 2 (Textbook Exercise 24.1-3). Let G = (V, E) a weighted directed graph that does not have negative cycles. Denote by s a vertex in V. Suppose that, for every vertex $v \in V$, there is a shortest path from s to v that has no more than L edges, where L is an integer at most |V| - 1. Design an algorithm to find the shortest paths from s to all the other vertices in $O(|E| \cdot L)$ time.

Problem 3 (Single Sink Shortest Paths). Let G = (V, E) a weighted directed graph that does not have negative cycles. Denote by t a vertex in V. Design an algorithm to find the shortest path from every vertex $v \in V$ to t. Your algorithm must terminate in O(|V||E|) time.

Problem 4 (Dynamic Programming Nature of Bellman-Ford's). Let G = (V, E) a weighted directed graph that does not have negative cycles. Denote by s a vertex in V. If a path from s to some vertex $v \in V$ uses at most $\ell \in [0, |V| - 1]$ edges, we call it an ℓ -path from s to v. Given a vertex v and an integer $\ell \in [0, |V| - 1]$, define $spdist(s, v | \ell)$ as the smallest length of all the ℓ -paths from s to v. Prove: for $\ell \geq 1$, it holds that

$$spdist(s, v \mid \ell) = \min \begin{cases} spdist(s, v \mid \ell - 1) \\ \min_{u \in IN(v)} spdist(s, u \mid \ell - 1) + w(u, v) \end{cases}$$
(1)

where IN(v) is the set of in-neighbors of v (namely, $u \in IN(v)$ if (u, v) is an edge in E).