
CSCI3160: Regular Exercise Set 1

Prepared by Yufei Tao

Problem 1. Recall that our RAM model has been extended with an atomic operation RANDOM(x, y)
which, given integers x, y, returns an integer chosen uniformly at random from [x, y]. Suppose that
you are allowed to call the operation only with x = 1 and y = 128. Describe an algorithm to obtain
a uniformly random number between 1 and 100. Your algorithm must finish in O(1) expected time.

Solution. Call RANDOM(1,128) and let z be its return value. Output z if it is in [1, 100].
Otherwise, repeat from the beginning. We need to call the operator twice in expectation because
each time z has probability 100/128 to fall in the range we want.

Problem 2*. Suppose that we enforce an even harder constraint that you are allowed to call
RANDOM(x, y) only with x = 0 and y = 1. Describe an algorithm to generate a uniformly random
number in [1, n] for an arbitrary integer n. Your algorithm must finish in O(log n) expected time.

Solution. We first obtain the smallest power of 2 that is at least n. For this purpose, set x = 1,
and double x each time until x ≥ n. The final x is the power of 2 we are looking for. This takes
O(log n) time.

Next we will generate a uniformly random number y in [1, x]. For this purpose, call RANDOM(0, 1),
and let z be its return. If z = 0, we proceed to generate a random number in [1, x/2] recursively;
otherwise, proceed in [(x/2) + 1, x] recursively. Note that the range of numbers has shrunk by half.
The recursion goes on O(log n) steps before the range contains only one number, which is the y we
want.

Return y if y ≤ n. Otherwise, repeat by generating another y. Since y ≥ x/2, at most 2 repeats
are needed in expectation. The overall time is therefore O(log n) in expectation.

Problem 3. Consider the following algorithm to find the greatest common divisor of n and m
where n ≤ m:

algorithm GCD(n,m)
if n = 0 then

return m
m = m− n
if n ≤ m then return GCD(n,m)
else return GCD(m,n)

Prove:

1. The time complexity of the algorithm is O(m).

2. The time complexity of the algorithm is Ω(m).

Solution.
Proof of Statement 1: Each time a recursive call to the algorithm is made, max{n,m} decreases by
at least 1. Therefore, there can be at most m calls overall. Each call clearly takes O(1) time.

Proof of Statement 2: Fix n = 1. It is clear that the algorithm must make m calls.
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Problem 4. For the k-selection problem, consider an input array A that has n = 120 elements.
Our randomized algorithm selects a number v, and recurse into a smaller array A′ if the rank of v
is within [n/3, 2n/3] = [40, 80]. For k = 20, what is the probability that the size of A′ is at most
60?

Solution. A′ has size at most 60 if the rank of v is between 40 and 61. The probability that this
happens is (61− 40 + 1)/(80− 40 + 1) = 22/41.

Problem 5** (A Simpler Randomized Algorithm for k-Selection, but with a More
Tedious Analysis ). In the k-selection problem, we have an array S of n distinct integers (not
necessarily sorted). We would like to find the k-th smallest integer in S where k ∈ [1, n]. Here is
another way of solving it using randomization. If n = 1, then we simply return the only element
in S. For n > 1, we proceed as follows:

• Randomly pick an integer v in S, and obtain the rank r of v in S.

• If r = k, return v.

• If r > k, produce an array S′ containing the integers of S that are smaller than v. Recurse
by finding the k-th smallest in S′.

• Otherwise, produce an array S′ containing the integers of S that are larger than v. Recurse
by finding the (r − k)-th smallest in S′.

Prove that the above algorithm finishes in O(n) expected time.

Solution. Let f(n) be the expected time of the above algorithm on an input of size n. Clearly,
f(0) = O(1) and f(1) = O(1).

Consider n > 1. The rank r of v is uniformly distributed in [1, n], namely, for each i ∈ [1, n],
Pr[r = i] = 1/n. When r = i, it determines a “left subset” containing the i − 1 integers of S
smaller than v, and a “right subset” of size n − i. In the worst case, we recurse into the larger of
the two subsets, namely, we would need to solve the problem on an array of size max{i− 1, n− i}.
This gives rise to the following recurrence (for some constant α > 0):

f(n) ≤ α · n+
1

n

n∑
i=1

f(max{i− 1, n− i})

≤ α · n+
2

n

n∑
i=dn/2e

f(i− 1)

We will prove that the recurrence leads to f(n) ≤ cn for some constant c > 0. First, this is
obviously true for n ≤ 24 when c is at least a certain constant, say β (when n = O(1), the algorithm
definitely finishes in constant time).
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Suppose that f(n) ≤ cn for n ≤ k − 1 where k ≥ 24. Set t = dk/2e. We have:

f(k) ≤ α · k +
2

k

k∑
i=t

c(i− 1) = α · k +
2c

k

k−1∑
i=t−1

i

= α · k +
2c

k

(k + t− 2)(k − t+ 1)

2
< α · k +

c(k2 + 3t− t2)
k

(1)

= (α+ c)k + 3c− ct
2

k
≤ (α+ c)k + 3c− c(k/2)2

k
= (α+ c)k + 3c− ck/4 (2)

We need the above to be at most ck, namely:

(α+ c)k + 3c− ck/4 ≤ ck

⇔ αk + 3c ≤ ck/4

⇐
{
ck/4 ≥ 2αk
ck/4 ≥ 6c.

⇐
{
c ≥ 8α
k ≥ 24.

Hence, setting c = max{β, 8α} completes the proof.

Remark. The above algorithm is procedurally simpler than the one we taught in the class, and is
faster in practice too. It, however, is less interesting in two ways: (i) its analysis is more complicated
(in the mundane way), and (ii) it does not illustrate the “if-failed-then-repeat” technique.
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