CSCI 2100 Tutorial 9

WU Hao

Outline

* A review on the binary heap
* Regular exercise 8 problem 4

* Special exercise 8 problem 4

Binary Heap (Review)

Let S be a set of n integers. A binary heapon Sis a
binary tree T satisfying:

1. T is a complete binary tree.

2. Every node u in T stores a distinct integer in S,
called the key of u.

3. If uis an internal node, the key of u is smaller than
those of its child nodes.

The third property may be violated after insertion
and delete-min.

Heap Property Violation

Original:
3
N
15 20
/ N\ / N\
37 27 53 25
/
91
After insertion: After delete-min:
3 91
N N
15 20 15 20
/ N\ / N\ /N / N\
37 27 53 25 37 27 53 25
/\
91 12

Restoring the Heap Property
After Insertion

Swap up:

If node u has a smaller key than its parent p, swap
the keys of u and p. Set u to p, and repeat until
there is no violation.

Swap Up

3

3
5 T
/NN > /NS
37 27 53 25 /12\ 27 53 25
91/ \12 91 37
Swap up at most O(logn)
times to restore the heap PN
property. a /20\
15 27 53 25
/\

91 37

Restoring the Heap Property
After Delete-min

Swap down:
Let v be the child of node u with a smaller key. If
the key of u is larger than the key of v, swap the

keys of u and v. Set u to v, and repeat until there is
no violation.

Swap Down

91 15
N N
15 20 |:> 91 20

/N /N /NN

37 27 53 25 37 27 53 25

\ ¢

Swap down at most .

O(logn) times to restore N
0

the heap property. /27\ /2 \

37 53 25

Regular Exercise 8 Problem 4

Problem:

Suppose that we have k sorted arrays (in ascending
order) A4, A,,..., A of integers. Let n be the total
number of integers in those arrays.

Describe an algorithm to produce an array that sorts
all the n integers in ascending order in O(nlogk) time.

Solution 1: Merge Operation

* Input
k=8,n=20
2 |12 |17 8 |11 10 311819
8 arrays
1|25 23| 28 15|30 40
8 (111217 9 110| 18|19
4 arrays
1 |23|25]|28 15|30 40
213|6|8|9]10(11(12(17|18]19
2 arrays
1 7 115(23(25(28|30|40

Solution 1: Merge Operation

Need O (log k) passes. Each pass takes O(n) time on n
integers (the cost of merging is proportional to the
number of elements involved).

Therefore, the total time complexity is O(n log k).

Solution 2: Binary Heap

* Input:
K=3,n=15
2 115|130|40|47 5 11|12
9 (14|21 (26|27 |37
* Output
2 |5 11(12(14|15|21|26(27|30|37 (40|47

Solution 2: Binary Heap

|deas:

* A binary heap of size k can perform delete-min and
insertion in O(log k) time.

* Perform a delete-min to obtain the smallest integer
that has not been output.

* After delete-min, insert a new integer into the heap
from the integer’s origin array.

Solution 2: Binary Heap

15[3040] 47 g8 [11]12 2
[9]14]21]26]27]37 ’ >
2 304047 g8 [11]12 >
[9]14]21]26]27]37 ’ >

Solution: Binary Heap

Initialization cost:

creating the output array: 0(n)
Processing cost:

n insertions: O(nlogk) n delete-min: O(nlogk)
Total time complexity:

O (nlog k)

Special Exercise 8 Problem 4

Problem:

Let S be a dynamic set of integers. At the beginning, S is
empty. Then, new integers are added to it one by one,
but never deleted. Let k be a fixed integer. Describe an
algorithm which achieves the following guarantees:

* Space consumption O (k).

* Insert(e): Insert a new element einto Sin O(log k)
time.

* Report-top-k: Report the k largest integersin S in O(k)
time.

Special Exercise 8 Problem 4

Example:

Suppose that k = 3, and the sequence of integers
inserted is 83, 21, 66, 5, 24, 76, 92, 33, 43,...

The 3 largest integers are 83, 66, 24 after the
insertion of 24, they become 83, 66, 76 after the
insertion of 76, and so on.

Solution

Intuition:
* A heap H of size k takes 0O (k) space.

* H performs insertion and delete-min in O(log k)
time.

* The root r of H stores the minimal integer in H.

* Make sure that H always contains the k largest
integers. If the incoming integer m is larger than
the minimal integer stored in H. We perform
delete-min and insert(m). Otherwise, we do
nothing.

Solution

* |Input:
83, 21, 66, 5, 24, 76, 92, 33, 43, ..., and k=3

///Zl\\\ ' ///2{\\\ !é//24\7§Jnﬂ;!ﬂiEdg;//6Q\E%

83 66 83 66

Solution

Maintain a binary heap H with k integers.

1. Insert first k integers into H. Each insertion takes
O(log k) time.

2. For a newly added integer e from the sequence,
compare it with the integer e,. stored at the root r
of H:

(1) If e > e,., perform delete-min and insert(e), which take
O(log k) time in total.

(2) Otherwise, ignore e.

Solution

Report-top-k:
Report all integers in H by traversing the heap.

A challenging problem for you

* For this problem, we can actually achieve
* O(k) space
* (0(1) amortized insertion time
* O(k) top-k report time.

e Hint: k-selection.

