More on Hashing

CSCI2100 Tutorial 7 Shangqi Lu

- Given a set of *n* integers *S* in [1, *U*]
- Main idea: divide S into a number m of disjoint subsets
- Guarantees
 - Space consumption: O(n + m)
 - Preprocessing cost: O(n+m)
 - Query cost: O(1 + n/m) in expectation

- Given a set of *n* integers *S* in [1, *U*]
- Main idea: divide S into a number m of disjoint subsets
- Set $m = \Theta(n)$
- Guarantees
 - Space consumption: O(n)
 - Preprocessing cost: O(n)
 - Query cost: O(1) in expectation

- Divide *S* into a number *m* of disjoint subsets:
 - Choose a function *h* from [1, *U*] to [1, *m*]
 - For each $i \in [1, m]$, create an empty linked list L_i
 - For each $x \in S$:
 - Compute h(x)
 - Insert *x* into $L_{h(x)}$
- Important:
 - Choose a good hash function *h*

- Construct a universal family
 - Pick a prime number p such that $p \ge m$ and $p \ge U$
 - Choose an integer α from [1,p-1] uniformly at random
 - Choose an integer β from [0,p-1] uniformly at random
 - Define a hash function:

 $h(k) = 1 + ((\alpha k + \beta) \mod p) \mod m$

Example

- Let $S = \{19, 36, 63, 53, 14, 9, 70, 26\}$
- We choose m = 10, p = 71, suppose that α and β are randomly chosen to be 3 and 7, respectively
- $h(k) = 1 + (((3k + 7) \mod 71) \mod 10)$

- Let *H* be the universal family defined in the previous slides
- Given a function $h \in H$ and an integer $q \in [1, U]$:
 - Define $cost(h, q) = |\{x \in S \mid h(x) = h(q)\}|$

query	value
-------	-------

	1	2	•••	U	Max
h_1	$cost(h_1, 1)$	$cost(h_1, 2)$		$cost(h_1, U)$	O(n)
h_2	$cost(h_2, 1)$	$cost(h_2, 2)$	•••	$cost(h_2, U)$	O(n)
	•••	••••		••••	O(n)
$h_{ H }$	$\cot(h_{ H }, 1)$	$cost(h_{ H }, 2)$		$\cot(h_{ H }, U)$	O(n)
Average	0(1)	0(1)	0(1)	0(1)	

- Worst-case expected query cost: O(1)
 - Pick a hash function from a universal family
- Worst-case query cost: O(n)
 - All elements are hashed into the same value
- Question:
 - Can we improve the worst-case query cost?

- Replace linked lists with arrays
- Sort the arrays, cost $O(n \log n)$ for preprocessing

- Query: whether 29 exists
- Step 1:
 - Access the hash table to obtain the address of corresponding array
 - *O*(1) time

- Query: whether 29 exists
- Step 2:
 - Perform binary search on the array to find the target
 - $O(\log n)$ time
- Overall worst-case complexity: $O(\log n)$

- This method retains the O(1) worst-case expected query time.
- Proof:
 - Suppose we look up an integer q
 - Define random variable $X_{h(q)}$ to be the length of array that corresponds to the hash value h(q)
 - Expected query time:
 - $\operatorname{E}\left[\log_2 X_{h(q)}\right] = \sum_{l=1}^n \log_2 l \operatorname{Pr}\left(X_{h(q)} = l\right)$

$$\leq \sum_{l=1}^{n} l \Pr(X_{h(q)} = l)$$

$$= \mathbf{E}[X_{h(q)}]$$

• = 0(1)

The Two-Sum Problem (revisited)

- Problem Input:
 - A set S of **unsorted** *n* distinct integers
 - The value n has been placed in Register 1
 - A positive integer v has been placed in Register 2
- Goal:
 - Determine whether if there exist two different integers x and y in S such that x + y = v
- For example:
 - Find a pair whose sum is 20

Solution 1: Binary Search the Answer

- Goal: Find a pair (x, y) such that x + y = v
- Observe that given x, y = v x, is determined
- Solution:
 - Sort S
 - For each x in S:
 - set y as v x
 - Use binary search to see if *y* exists in the sequence
- Time complexity: $O(n \log n)$

Solution 2: Using the Hash Table

- Step 1 and 2:
 - Choose a hash function h and create an empty hash table H
 - Insert each x in S into $L_{h(x)}$
- Step 3:
 - For each x in S:
 - Set y as v x
 - Check if y is in the hash table; if it is, return yes
 - Return no

Time Complexity

- Step 1 and 2: *O*(*n*)
- Step 3:
 - Let X_i be the query time for the *i*-th integer in S
 - We know $E[X_i] = O(1)$
 - Define $X = \sum_i X_i$
 - The worst-case expected cost of step 3:
 - $E[X] = \sum_i E[X_i] = O(n)$
- Overall: O(n) in expectation