
More on Hashing

CSCI2100 Tutorial 7
Shangqi Lu

Review on Hash Table

• Given a set of integers in
• Main idea: divide into a number of disjoint

subsets
• Guarantees

• Space consumption:
• Preprocessing cost:
• Query cost: in expectation

Review on Hash Table

• Given a set of integers in
• Main idea: divide into a number of disjoint

subsets
• Set
• Guarantees

• Space consumption:
• Preprocessing cost:
• Query cost: in expectation

Review on Hash Table

• Divide into a number of disjoint subsets:
• Choose a function from to
• For each , create an empty linked list
• For each :

• Compute
• Insert into ௛(௫)

• Important:
• Choose a good hash function

Review on Hash Table

• Construct a universal family
• Pick a prime number p such that and
• Choose an integer from uniformly at

random
• Choose an integer from uniformly at

random
• Define a hash function:

Example
• Let

• We choose , suppose that and are randomly chosen
to be 3 and 7, respectively

•

Hash Table

… Max

ଵ ଵ ଵ … ଵ

ଶ ଶ ଶ … ଶ

… … …. … ….

ு |ு| |ு| … |ு|

Average

• Let be the universal family defined in the previous slides

• Given a function and an integer q
• Define cost(ℎ, 𝑞) = | 𝑥 ∈ 𝑆 ℎ 𝑥 = ℎ(𝑞)}|

query value

Hash Table

• Worst-case expected query cost:
• Pick a hash function from a universal family

• Worst-case query cost:
• All elements are hashed into the same value

• Question:
• Can we improve the worst-case query cost?

Hash Table

• Replace linked lists with arrays
• Sort the arrays, cost for preprocessing

NIL10 6 28 2 14 29 9 26

2 6 9 10 14 26 28 29

NIL18

NIL24

18

24

Hash Table

• Query: whether 29 exists
• Step 1:

• Access the hash table to obtain the address of
corresponding array

• time

2 6 9 10 14 26 28 29

18

24

Hash Table

• Query: whether 29 exists
• Step 2:

• Perform binary search on the array to find the target
• time

• Overall worst-case complexity:

2 6 9 10 14 26 28 29

18

24

Hash Table

• This method retains the worst-case expected
query time.

• Proof:
• Suppose we look up an integer
• Define random variable to be the length of array that

corresponds to the hash value
• Expected query time:

• ଶ ௛ ௤ ଶ
௡
௟ୀଵ ௛ ௤

• ௡
௟ୀଵ ௛ ௤

• ௛ ௤

•

The Two-Sum Problem (revisited)

• Problem Input:
• A set S of unsorted distinct integers
• The value has been placed in Register 1
• A positive integer has been placed in Register 2

• Goal:
• Determine whether if there exist two different integers and in S such that

• For example:
• Find a pair whose sum is 20

11 3 17 7 2 13

Solution 1: Binary Search the Answer

• Goal: Find such that
• Observe that given x, , is determined
• Solution:

• Sort S
• For each in S:

• set 𝑦 as 𝑣 − 𝑥

• Use binary search to see if 𝑦 exists in the sequence

• Time complexity:

Solution 2: Using the Hash Table

• Step 1 and 2:
• Choose a hash function and create an empty hash table
• Insert each x in S into ௛ ௫

• Step 3:
• For each in S:

• Set 𝑦 as 𝑣 − 𝑥

• Check if y is in the hash table; if it is, return yes

• Return no

Time Complexity

• Step 1 and 2:

• Step 3:
• Let ௜ be the query time for the -th integer in

• We know ௜

• Define ௜୧

• The worst-case expected cost of step 3:

• 𝐸 X = ∑ 𝐸 X୧௜ = O(n)

• Overall: in expectation

