
CSCI 2100 Tutorial 6

WU Hao

Outline

• Counting sort again – a linked list version

• Dynamic array vs linked list

• Dynamic array: space and update tradeoff

Multi-set Sorting Problem
(Review)
• Problem input:

• An array containing key-value pairs, where each key is
an integer from [1, U].
E.g.: (93, 1155123456)

• Goal:
• An array storing all pairs in nondescending order of key.

Multi-set Sorting Problem

• Input:

• Initially we will have the following array

7 ଶ 2 ଷ 6 ସ 2 ହ 7 ଺ 1 ଻ 2 ଼

ଵ ଵ ଶ ଶ ଷ ଷ ସ ସ ହ ହ ଺ ଺ ଻ ଻

9 ଵ

଼ ଼

2 ଷ 2 ହ 2 ଼ 6 ସ 7 ଶ 7 ଺ 9 ଵ1 ଻

Sorted Array

Input Array

• Rearrange the elements so that their keys are sorted:

Multi-set Sorting Problem

Today we will learn a simple variant of counting sort
based on linked lists. The new algorithm also
achieves the time complexity O(n + U).

Counting Sort (Linked List Ver.)

1 2 3 4 5 6 7 8 9

：This means a null pointer

Compute

9 ଵ 7 ଶ 2 ଷ 6 ସ 2 ହ 7 ଺ 1 ଻ 2 ଼

Counting Sort (Linked List Ver.)
9 ଵ 7 ଶ 2 ଷ 6 ସ 2 ହ 7 ଺ 1 ଻ 2 ଼

9 ଵ 7 ଶ 2 ଷ 6 ସ 2 ହ 7 ଺ 1 ଻ 2 ଼

1 2 3 4 5 6 7 8 9

ଵ

1 2 3 4 5 6 7 8 9

ଵଶ

9 ଵ 7 ଶ 2 ଷ 6 ସ 2 ହ 7 ଺ 1 ଻ 2 ଼

1 2 3 4 5 6 7 8 9

ଵଶଷ

Counting Sort (Linked List Ver.)

9 ଵ 7 ଶ 2 ଷ 6 ସ 2 ହ 7 ଺ 1 ଻ 2 ଼

1 2 3 4 5 6 7 8 9

ଵଶଷ ସ

ହ

9 ଵ 7 ଶ 2 ଷ 6 ସ 2 ହ 7 ଺ 1 ଻ 2 ଼

1 2 3 4 5 6 7 8 9

ଵଶଷ ସ

ହ ଺

Counting Sort (Linked List Ver.)

9 ଵ 7 ଶ 2 ଷ 6 ସ 2 ହ 7 ଺ 1 ଻ 2 ଼

1 2 3 4 5 6 7 8 9

ଵଶଷ ସ

ହ ଺

଻

଼

Counting Sort (Linked List Ver.)
9 ଵ 7 ଶ 2 ଷ 6 ସ 2 ହ 7 ଺ 1 ଻ 2 ଼

1 ଻ 2 ଼ 2 ହ 2 ଷ 6 ସ 7 ଺ 7 ଶ 9 ଵ

How do we produce the sorted array A’?

Scan array B. For each cell pointing to a non-empty linked
list, enumerate all the pairs therein.

Overall time complexity:

1 2 3 4 5 6 7 8 9

ଵଶଷ ସ

ହ ଺

଻

଼

Dynamic Array vs Linked List

A linked list ensures O(1) insertion cost. A dynamic
array guarantees O(1) insertion cost only after
amortization.

However, a dynamic array provides constant-time
access to any element, which a linked list cannot
achieve.

Dynamic Array vs Linked List
Question:
Design a data structure of space to store a set S
of n integers to satisfy the following requirements:

• An integer can be inserted in time.
• We can enumerate all integers in time.

Answer: Linked list.

Dynamic Array vs Linked List
Question:
Design a data structure of space to store a set S
of n integers to satisfy the following requirements:

• An integer can be inserted in amortized time.
• We can enumerate all integers in time.
• For each i , access i-th inserted integer in

time.
Answer: Dynamic array

Space-Update Tradeoff of the
Dynamic Array

In the lecture, we expand the array from size n to 2n
when it is full.

What if we expand the array size to ?

Space-Update Tradeoff of the
Dynamic Array
• Initially, size (define)
• 1st expansion: size from to .
• 2nd expansion: from to .

…
• i-th expansion: from to .

We can prove: and .

Space-Update Tradeoff of the
Dynamic Array
• The total cost of n insertions is bounded by:

where h is the number of expansions.

It must hold that (the h-th expansion
happened because the array of size was full).

Hence, the total cost is O(n).

Space-Update Tradeoff of the
Dynamic Array

• Consider what happens in general. When the array
is full, expand its size from n to , for some
constant .

Space-Update Tradeoff of the
Dynamic Array
• Initially, size (define)
• 1st expansion: size from to .
• 2nd expansion: from to .

…
• i-th expansion: from to ..

We can prove:
೔

and .

Space-Update Tradeoff of the
Dynamic Array

The total cost of n insertions is bounded by:

where h is the number of expansions.

It must hold that (the h-th expansion happened
because the array of size was full).

Hence, the total cost is
మ

మ , namely, amortized

cost
మ

మ .

Space-Update Tradeoff of the
Dynamic Array

Amortized cost
మ

మ .

When decreases, the space consumption goes down, but
the insertion cost goes up.

