CSCI 2100 Tutorial 6

WU Hao

Outline

* Counting sort again — a linked list version
* Dynamic array vs linked list

* Dynamic array: space and update tradeoff

Multi-set Sorting Problem
(Review)

* Problem input:

* An array containing n key-value pairs, where each key is
an integer from [1, U].
E.g.: (93, 1155123456)

* Goal:
* An array storing all pairs in nondescending order of key.

Multi-set Sorting Problem

* Input:
{{9,v1},{7,v2},{2,v3},{6, v, }, {2, v5 1, {7, v }, {1, v, }, {2, vg}}
* |nitially we will have the following array
Input Array

ki vi ky v, ks v3 kg4 vy ks vs kg ve k; v, kg vg

9 vy | 7 (v | 2 |v3| 6 (Vs | 2 |Us | 7 (V| 1 (V]| 2 |Vg

* Rearrange the elements so that their keys are sorted:

Sorted Array

1 U~y 2 V3 2 14 2 Vg 6 Uy 7 (%) 7 Vg 9 V1

Multi-set Sorting Problem

Today we will learn a simple variant of counting sort
based on linked lists. The new algorithm also
achieves the time complexity O(n + U).

Counting Sort (Linked List Ver.)

1 2 3 45 6 7 8 9

I I A _L_: This means a null pointer
v v v * v v oy

Compute B

QW7 Wwa|2W3|[6V4]|2Ws(7 V6|l ,]2Ivg

Counting Sort (Linked List Ver.)

1 2 3 45 6 7 8 9

9 2] 'z U3 Uy Us 43 U~ Vg [N
EERERRRT"
V1
X
1 2 4 5 6 7 8 9
Oy [Ty |23 6Ws|2V5|7 V6|1 vy]|2 Vg AN 1|
y v v v Ej
|] # v, 1 1
X X
1 2 4 5 6 7 8 9
Wi 7w [23| 6Ws[2Vs5|7 |l V7]2 (Vg i i | i |
L L] 1) J_Ea
1 X X

Counting Sort (Linked List Ver.)

1 2 3 45 6 7 8 9

QWi 7|2 s Uy | &Vs | / [Ve| L V7 Vg AN o
v v j|_¢ ¢
__173 — J_v4 %) J_vl
[R
Vs
1 2 3 4 56 7 8 9
QWi 7w |2W3[6Ws|2W5[86|l vs|2|vg

| 1 | |
4 A\ 4 # ¢
| 11 A

S

<

N
e

|

Counting Sort (Linked List Ver.)

1 2 3 45 6 7 8 9

V7

1

U3
Vs
X

| |
11y

2

(%)

X

|
1

-3l

Counting Sort (Linked List Ver.)

1 2 3 45 6 7 8 9

QWi |7 Wwa[2W3|6V4|2Ws5[7 V6|1 7|2 Vg iR
A 111

|
L]
v4v2J_1

V7 |[V3
1 1 1
[e
1w, |2wg|2Wws|2W3[6Vs|7 V6|7 Vy]9 Ve _f_ i
A, Vg
1

How do we produce the sorted array A’?

Scan array B. For each cell pointing to a non-empty linked
list, enumerate all the pairs therein.

Overall time complexity: O(n + U)

Dynamic Array vs Linked List

A linked list ensures O(1) insertion cost. A dynamic
array guarantees O(1) insertion cost only after
amortization.

However, a dynamic array provides constant-time
access to any element, which a linked list cannot
achieve.

Dynamic Array vs Linked List

Question:

Design a data structure of O(n) space to store a set S
of n integers to satisfy the following requirements:

* Aninteger can be inserted in O(1) time.
* We can enumerate all integers in O(n) time.

Answer: Linked list.

Dynamic Array vs Linked List

Question:

Design a data structure of O(n) space to store a set S
of n integers to satisfy the following requirements:

* Aninteger can be inserted in O(1) amortized time.
* We can enumerate all integers in O(n) time.

* For each j € [1,n], access i-th inserted integer in
0(1) time.

Answer: Dynamic array

Space-Update Tradeoff of the
Dynamic Array

In the lecture, we expand the array from size n to 2n
when it is full.

What if we expand the array size to |1.57n|?

Space-Update Tradeoff of the
Dynamic Array

* Initially, size 2 (define s; = 2)
* 1t expansion: size from s; to s, = [1.55,] = 3.

e 2"d expansion: from s, to s; = [1.5s,] = 5.

* j-th expansion: from s; to s;,; = [1.5s;].

We can prove: s; < ()15‘—2 = 0(15)andsl > 1.5%

Space-Update Tradeoff of the
Dynamic Array

* The total cost of n insertions is bounded by:
n h
Z 0(1) |+ Z 0(1.5"*1) = 0(n + 1.5"*1)
i=1 i=1

where h is the number of expansions.

It must hold that n > s;, = 1.5" (the h-th expansion
happened because the array of size s;, was full).

Hence, the total cost is O(n).

Space-Update Tradeoff of the
Dynamic Array

* Consider what happens in general. When the array
is full, expand its size from n to an, for some
constant 1 < a < 2.

Space-Update Tradeoff of the
Dynamic Array

* Initially, size 2 (define s; = 2)
e 1t expansion: size from s; to s, = [as,].

 2"d expansion: from s, to s; = [as,]|.

* j-th expansion: from s; to s;,; = |as;]..

i

)ands; = al.

a
We can prove: s; = 0(a -

Space-Update Tradeoff of the
Dynamic Array

The total cost of n insertions is bounded by:

n h oi+1 o2
20(1) +20(a_1) — 0<n+(a_)2>
=1 =1

where h is the number of expansions.

It must hold that n > s, = a* (the h-th expansion happened
because the array of size s; was full).

2
Hence, the total costis O (n + =), namely, amortized

. (a-1)2 "
a
cost=0 (1 + (a—1)2)'

Space-Update Tradeoff of the
Dynamic Array

2
Amortized cost = O (1 + z)
(a—1)2

When a decreases, the space consumption goes down, but
the insertion cost goes up.

