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This lecture will introduce a technique called recursion for designing
algorithms. lIts principle is:

When dealing with a subproblem (same problem but with a smaller
input), consider it solved.

We will apply the technique to settle several problems in this course.
Today, we will see two examples. In the first, we will re-discover binary
search; in the second, we will design our first sorting algorithm.
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An array of length n is a sequence of n elements such that

@ they are stored consecutively in memory (i.e., the first
element is immediately followed by the second, and then by
the third, and so on);

@ every element occupies the same number of memory cells.

M - O

5] 9 [z 17[26[2s asjoojr2ssfss] [ [ [ [ [ [ [ [[[[[]]

‘4’ array of length 16 ‘>‘

35 52

384147

'47 array of length 12 l>‘
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With the concept of array, we now redefine the dictionary search problem:

(The Dictionary Search Problem (Redefined))

Problem Input:

A set S of n integers has been arranged in ascending order in an array of

length n. You are given the value of n and another integer v inside the
CPU.

Goal:

Design an algorithm to determine whether v exists in S.
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(Binary Search (Re—discovered))

1. Compare v to the middle element e of the array. If v = e, return
“yes" and done.

2. Otherwise:

2.1 If v < e, we have a subproblem: check if v is in the portion
of the array before e;

2.2 If v > e, we have a subproblem: check if v is in the portion
of the array after e.

Considering the subproblem solved, we finish the algorithm.

Think: why does it work?
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CAnaIysis of Binary Search)

Recursion allows us to analyze the running time in an elegant manner.

Define f(n) to be the maximum running time of binary search on n
elements. For n =1, clearly:

For n > 1:

6/15
Yufei Tao Recursion (the Beginning)



(Analysis of Binary Search)

So it remains to solve the recurrence (c1, c; are constants whose values
we do not care):

f(].) =
fln) < a+f([n/2])

Suppose, for now, that n is a power of 2. An easy way of doing so is the
expansion method, which simply expands f(n) all the way down:

f(n) ¢+ f(n/2)

o+ o+ f(n/2?)
o+ o+ o+ f(n/2d)
o+ ...+ c+rf(1)
L

log, n of them

VAN VAN VAN VA

¢ - logy n+ ¢1 = O(log n).
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(Analysis of Binary Search)

We can deal with general n (not necessarily a power of 2) using a
rounding approach. Let n’ be the least power of 2 that is larger than n.
It thus holds that n’ < 2n (otherwise, n’ is not the least).

We then have:

f(n)

¢ - log, n’ + ¢ (proved earlier)
c2 - logy(2n) + a1

c(1 + logy n) + 1

= ologyn+ ¢+ o = O(log n).

f(n)

VAN VANVAN
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Next, we switch our attention to the sorting problem, which is a
classical problem in computer science, and is worth several lectures’

discussion.

Recursion (the Beginning)
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(The Sorting Problem)

Problem Input:

A set S of n integers is given in an array of length n. The value of n is
inside the CPU (i.e., in a register).

Goal:

Produce an array that stores the elements of S in ascending order.
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Input:

R

(3] 2sfss [vr] 26[ 1 [ ssfooarzfes s [s2fse[ o [ [ [ [ [ [ [ [ [ [ [TT]

Output:

R

[5] o 12[17]26[2s]ss]38]ar[ar]m2fesfoo]2[ss[ss] [ [ [ [ [ [ [ [ [ [ [ 1]
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Selection Sort

1. Find the largest integer €,,.x in S.

2. Swap emax with the last (i.e., n-th) element of the array (after
which epayx is at the end of the array).

3. We now have a subproblem: sort the first n — 1 elements.

Let us consider that the subproblem has been solved. Now, the entire
array is in ascending order. We thus finish the algorithm.

12/15

Yufei Tao Recursion (the Beginning)



Input:

] - O

[38]28]ss [ 17] 26]41] 2] 83[60[47]12]68 ] 5 [52] 35] 9

52

After Step 2:

W] - [

[3s] 28] o [vr]2o] 1 [v2[ss[oo[ar[sefes] s s2[ss]ss] | [ [ [ [ [ [ [ [ [ [ ][]

‘47 sort these 15 elements r(z(:llrsivcly;»‘
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(Analysis of Selection Sort)

Let f(n) be the maximum running time of selection sort when the
problem size is n. We know:

f(1) = 0Q)
For n > 2, we have:
f(n) < O(n)+f(n—1)

where the term O(n) captures the cost of Steps 1 and 2, and f(n—1) is
the cost of Step 3.
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(Analysis of Selection Sort)

So it remains to solve the recurrence (c1, ¢, are constants):

f(l) =
f(n) < en+f(n—1)

Using the expansion method, we get:

f(n) cn+f(n—1)
an+co(ln—1)+f(n—2)

on+ o(n—1)+ a(n—2)+ f(n—23)
ant+aln—1)+..4+c-2+17(1)
an(n+1)/2+ ¢

o(n?).

VAN VAN VAN VAN VAN

We now conclude that selection sort runs in O(n?) worst-case time.
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