Recursion (the Beginning)

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong

1/15

Yufei Tao Recursion (the Beginning)

This lecture will introduce a technique called recursion for designing
algorithms. lIts principle is:

When dealing with a subproblem (same problem but with a smaller
input), consider it solved.

We will apply the technique to settle several problems in this course.
Today, we will see two examples. In the first, we will re-discover binary
search; in the second, we will design our first sorting algorithm.

2/15

Yufei Tao Recursion (the Beginning)

An array of length n is a sequence of n elements such that

@ they are stored consecutively in memory (i.e., the first
element is immediately followed by the second, and then by
the third, and so on);

@ every element occupies the same number of memory cells.

M - O

5] 9 [z 17[26[2s asjoojr2ssfss] [[[[[[[[[[[[]]

‘4’ array of length 16 ‘>‘

35 52

384147

'47 array of length 12 l>‘

3/15

Yufei Tao Recursion (the Beginning)

With the concept of array, we now redefine the dictionary search problem:

(The Dictionary Search Problem (Redefined))

Problem Input:

A set S of n integers has been arranged in ascending order in an array of

length n. You are given the value of n and another integer v inside the
CPU.

Goal:

Design an algorithm to determine whether v exists in S.

4/15
Yufei Tao Recursion (the Beginning)

(Binary Search (Re—discovered))

1. Compare v to the middle element e of the array. If v = e, return
“yes" and done.

2. Otherwise:

2.1 If v < e, we have a subproblem: check if v is in the portion
of the array before e;

2.2 If v > e, we have a subproblem: check if v is in the portion
of the array after e.

Considering the subproblem solved, we finish the algorithm.

Think: why does it work?

5/15

Yufei Tao Recursion (the Beginning)

CAnaIysis of Binary Search)

Recursion allows us to analyze the running time in an elegant manner.

Define f(n) to be the maximum running time of binary search on n
elements. For n =1, clearly:

For n > 1:

6/15
Yufei Tao Recursion (the Beginning)

(Analysis of Binary Search)

So it remains to solve the recurrence (c1, c; are constants whose values
we do not care):

f(].) =
fln) < a+f([n/2])

Suppose, for now, that n is a power of 2. An easy way of doing so is the
expansion method, which simply expands f(n) all the way down:

f(n) ¢+ f(n/2)

o+ o+ f(n/2?)
o+ o+ o+ f(n/2d)
o+ ...+ c+rf(1)
L

log, n of them

VAN VAN VAN VA

¢ - logy n+ ¢1 = O(log n).

7/15

Yufei Tao Recursion (the Beginning)

(Analysis of Binary Search)

We can deal with general n (not necessarily a power of 2) using a
rounding approach. Let n’ be the least power of 2 that is larger than n.
It thus holds that n’ < 2n (otherwise, n’ is not the least).

We then have:

f(n)

¢ - log, n’ + ¢ (proved earlier)
c2 - logy(2n) + a1

c(1 + logy n) + 1

= ologyn+ ¢+ o = O(log n).

f(n)

VAN VANVAN

8/15

Yufei Tao Recursion (the Beginning)

Next, we switch our attention to the sorting problem, which is a
classical problem in computer science, and is worth several lectures’

discussion.

Recursion (the Beginning)

9/15

(The Sorting Problem)

Problem Input:

A set S of n integers is given in an array of length n. The value of n is
inside the CPU (i.e., in a register).

Goal:

Produce an array that stores the elements of S in ascending order.

10/15
Yufei Tao Recursion (the Beginning)

Input:

R

(3] 2sfss [vr] 26[1 [ssfooarzfes s [s2fse[o [[[[[[[[[[[TT]

Output:

R

[5] o 12[17]26[2s]ss]38]ar[ar]m2fesfoo]2[ss[ss] [[[[[[[[[[[1]

11/15

Yufei Tao Recursion (the Beginning)

Selection Sort

1. Find the largest integer €,,.x in S.

2. Swap emax with the last (i.e., n-th) element of the array (after
which epayx is at the end of the array).

3. We now have a subproblem: sort the first n — 1 elements.

Let us consider that the subproblem has been solved. Now, the entire
array is in ascending order. We thus finish the algorithm.

12/15

Yufei Tao Recursion (the Beginning)

Input:

] - O

[38]28]ss [17] 26]41] 2] 83[60[47]12]68] 5 [52] 35] 9

52

After Step 2:

W] - [

[3s] 28] o [vr]2o] 1 [v2[ss[oo[ar[sefes] s s2[ss]ss] | [[[[[[[[[[][]

‘47 sort these 15 elements r(z(:llrsivcly;»‘

13/15

Yufei Tao Recursion (the Beginning)

(Analysis of Selection Sort)

Let f(n) be the maximum running time of selection sort when the
problem size is n. We know:

f(1) = 0Q)
For n > 2, we have:
f(n) < O(n)+f(n—1)

where the term O(n) captures the cost of Steps 1 and 2, and f(n—1) is
the cost of Step 3.

14/15

Yufei Tao Recursion (the Beginning)

(Analysis of Selection Sort)

So it remains to solve the recurrence (c1, ¢, are constants):

f(l) =
f(n) < en+f(n—1)

Using the expansion method, we get:

f(n) cn+f(n—1)
an+co(ln—1)+f(n—2)

on+ o(n—1)+ a(n—2)+ f(n—23)
ant+aln—1)+..4+c-2+17(1)
an(n+1)/2+ ¢

o(n?).

VAN VAN VAN VAN VAN

We now conclude that selection sort runs in O(n?) worst-case time.

15/15

Yufei Tao Recursion (the Beginning)

