Quick Sort

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong

1/12

Yufei Tao Quick Sort

Today, we will discuss another sorting algorithm named quick sort. It is
a randomized algorithm that runs in O(n?) time in the worst case but
O(nlog n) time in expectation.

2/12

Yufei Tao Quick Sort

Recall:

(The Sorting Problem)

Problem Input:

A set S of n integers is given in an array A of length n.

Goal:

Produce an array that stores the elements of S in ascending order.

3/12

Yufei Tao Quick Sort

@ Pick an integer p in A uniformly at random, which is called the
pivot.

@ Re-arrange the integers in an array A’ such that

o all the integers smaller than p are before p in A’;
o all the integers larger than p are after p in A’

© Sort the part of A’ before p recursively (a subproblem).
@ Sort the part of A’ after p recursively (a subproblem).

4/12

Yufei Tao Quick Sort

After Step 1 (suppose that 26 was randomly picked as the pivot):

p
(3] 28fss [17 2] 41|72 safooarrzfes[s[s2[sso] | [[[[[[[[[1]

After Step 2:

P
5] 9 | 26] 38] 28] 8] 41] 72] 83 69] a7]68 52 | 35]

[1712

After Steps 3 and 4:

P
o[12]17] 26] 28]35 s8] ar[ar[s2fes o [72[ss[ss| [[[[[[[[[[1 1] 1]

5

5/12

Yufei Tao Quick Sort

(Analysis of Quick Sort)

Quick sort is not attractive in the worst case: its worst case time is
O(n?) (why?). However, quick sort is fast in expectation: we will prove

that its expected time is O(nlog n). Remember: this holds on every
input array A.

6/12
Yufei Tao Quick Sort

The rest of the slides will not be tested for CSCI2100.

7/12

Yufei Tao Quick Sort

(Analysis of Quick Sort)

First, convince yourself that it suffices to analyze the number X of
comparisons. The running time is bounded by O(n+ X).

Next, we will prove that E[X] = O(nlog n).

8/12
Yufei Tao Quick Sort

CAnaIysis of Quick Sort)

Denote by e; the i-th smallest integer in S. Consider ¢;, ¢; for any i/, j
such that i # j.

What is the probability that quick sort compares e; and ¢;?

This question, which seems to be difficult at first glance, has a
surprisingly simple answer. Let us observe:

@ Every element will be selected as a pivot exactly once.

@ ¢; and ¢ are not compared, if any element between them gets
selected as a pivot before ¢; and ¢;.

For example, suppose that i = 7 and j = 12. If ey is the
pivot, then e; and ¢ will be separated by ey (think: why?)
and will not be compared in the rest of the algorithm.

9/12
Yufei Tao Quick Sort

(Analysis of Quick Sort)

Therefore, ¢; and ¢; are compared if and only if either one is the first
among ej, €41, ..., & picked as a pivot.

The probability is 2/(j — i + 1).

10/12
Yufei Tao Quick Sort

(Analysis of Quick Sort)

Define random variable Xj; to be 1, if ¢; and ¢; are compared. Otherwise,
Xjj = 0. We thus have Pr[X;j =1] =2/(j — i +1). That is,
E[Xj]=2/(j—i+1).

Clearly, X = Zi,j Xij. Hence:

EX] = Y EXl= Y ——

INHR] i,j:i<j'/

n—=1 n 1
- zgj:zi;lj—i+l
n—1

= 2) O(log(n—i+1))
i=1
n—1
= 22 O(log n) = O(nlog n).

11/12

Yufei Tao Quick Sort

(Analysis of Quick Sort)

The above analysis used the following fact:
1+1/2+1/34+1/4+...4+1/n= O(logn).

The left-hand side is called the harmonic series.

12/12

Yufei Tao Quick Sort

