Linked Lists, Stacks, and Queues

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong

1/18

Yufei Tao Linked Lists, Stacks, and Queues

A data structure stores a set of elements and supports certain
operations on those elements.

The only data structure in our discussion so far is the array.
In this lecture, we will first discuss a new data structure, the linked list,

and then utilize it to design two other structures: the stack and the
queue.

2/18

Yufei Tao Linked Lists, Stacks, and Queues

Linked List

A linked list is a sequence of nodes where:
@ a node is an array;
@ a node’s address is its array's starting memory address;
@ each node stores in its array

o a back-pointer to its preceding node (if it exists);
e a next-pointer to its succeeding node (if it exists).

Recall that a “pointer” is a memory address.

In a linked list, the first node is called the head and the last node is
called the tail.

Yufei Tao Linked Lists, Stacks, and Queues

3/18

Linked List

The figure below illustrates a linked list of three nodes uy, up, and us,
whose addresses are a, b, and ¢, respectively.

address
c b

a o
[[T oD -

The back-pointer of node u; (the head) is nil, denoted by L. The
next-pointer of us (the tail) is also nil.

4/18

Yufei Tao Linked Lists, Stacks, and Queues

Example:

A linked list storing a set of integers {14, 65,78, 33,82}:

a d @ @
[l [ello] e[[-] [u[[i[s[o]d]

Conceptually, we can think of the sequence (65,78,33,82,14) in
the linked list as:

66 4—» 78 a4—p» 33 4—» [q—p 14

Yufei Tao Linked Lists, Stacks, and Queues

5/18

(Two (Simple) Facts)

Suppose that we use a linked list to store a set S of n integers (one node
per integer).

Fact 1: The linked list uses O(n) space, namely, O(n) memory
cells.

Fact 2: Starting from the head node, we can enumerate all the
integers in S in O(n) time.

6/18

Yufei Tao Linked Lists, Stacks, and Queues

A linked list storing a set S supports updates:
@ insertion: add a new element to S;

@ deletion: remove an existing element from S.

7/18

Linked Lists, Stacks, and Queues

(Insertion in a Linked List)

To insert a new element e, append e to the linked list:
© Identify the tail node u.
@ Create a new node 1., to store e.
© Set the next-pointer of u to the address of wupey, .

@ Set the back-pointer of e, to the address of u.

O(1) time.

8/18

Yufei Tao Linked Lists, Stacks, and Queues

b a d e
‘78‘&‘(" ‘GB‘L‘};‘ ‘82‘6‘8‘ ‘14‘0"L‘33‘b‘d‘

c

65 w4—» 78 <4—» 33 4-—> 32 4<—p 14

After inserting 57:

b a d e c
] e]e] [os] (o] [s2]c]e] [ufd]r[ss]n]a]

57

e

6 4+—» 8 a4—>» 3 4-—>» 382 4<—p 14 «—>» 57

9/18

Yufei Tao Linked Lists, Stacks, and Queues

(Deletion from a Linked List)

Given a pointer to a node u in the linked list, we can delete the node as
follows:

@ Identify the preceding node up.ec of wu.

@ Identify the succeeding node ugy of u.

© Set the next-pointer of uprec to the address of ugycc.
@ Set the back-pointer of ug,c to the address of uprec.

©@ Free up the memory of w.

O(1) time

10/18

Yufei Tao Linked Lists, Stacks, and Queues

] b a d e c
‘57‘6,“‘ [s]a] s o] [s2]e]e] ‘14‘”1"33‘1)‘(1‘

65 w4—» 8 <4—» 33 4—> 32 4—p 14 «—» 57

After deleting 78:

a e c
57]e [1] ‘h‘ﬁ‘J‘r‘ ‘82‘6‘8‘ ‘14‘4“‘33‘0‘”

6F 4-—» 33 4—» 82 4—p» 14 «—>» 57

11/18

Yufei Tao Linked Lists, Stacks, and Queues

Next, we will deploy the linked list to implement two data struc-
tures: stack and queue

12/18

Yufei Tao Linked Lists, Stacks, and Queues

A stack manages a set S of elements and supports two operations:
@ push(e): insert a new element e into S.

@ pop: remove the most recently inserted element from S and
returns it.

First-In-Last-Out (FILO).

13/18

Yufei Tao Linked Lists, Stacks, and Queues

Consider the following sequence of operations on an empty stack:

Push(35): S = {35}.

Push(23): S = {35,23}.

Push(79): S = {35,23,79}.

Pop: return 79 after removing it from S. Now S = {35,23}.
Pop: return 23 after removing it from S. Now S = {35}.
Push(47): S = {35,47}.

Pop: return 47 after removing it from S. Now S = {35}.

14/18

Yufei Tao Linked Lists, Stacks, and Queues

(Linked—List implementation of a Stack)

Store the elements of S in a linked list L.

Push(e): insert e at the end of L.
Pop: delete the tail node of L and return the element therein.

At all times, keep track of a pointer to the tail node.

Guarantees:

@ O(n) space where n = |S| (assuming that each element in S
occupies O(1) memory).

@ Push in O(1) time.

@ Pop in O(1) time.

Yufei Tao Linked Lists, Stacks, and Queues

15/18

A queue stores a set S of elements and supports two operations:
@ en-queue(e): inserts an element e into S.

@ de-queue: removes the least recently inserted element from S
and returns it.

First-In-First-Out (FIFO).

16/18

Yufei Tao Linked Lists, Stacks, and Queues

Consider the following sequence of operations on an initially empty
queue:

@ En-queue(35): S = {35}.

o En-queue(23): S = {35,23}.

o En-queue(79): S = {35,23,79}.

@ De-queue: return 35 after removing it from S. Now S = {23,79}.
@ De-queue: return 23 after removing it from S. Now S = {79}.

En-queue(47): S = {79,47}.

@ De-queue: return 79 after removing it from S. Now S = {47}.

17/18

Yufei Tao Linked Lists, Stacks, and Queues

(Linked—List Implementation of a Queue)

Store the elements of S in a linked list L.

En-queue(e): insert e at the end of L.
De-queue: delete the head node of L and return the element therein.

At all times, keep track of the addresses of the head and the tail.

Guarantees:

@ O(n) space, where n = |S| (assuming each element in S
occupies O(1) memory).

@ En-queue in O(1) time.

@ De-queue in O(1) time.

Yufei Tao Linked Lists, Stacks, and Queues

18/18

