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Undirected Graphs

An undirected graph is a pair of (V ,E ) where:

V is a set of elements, each of which called a node.

E is a set of unordered pairs {u, v} where u and v are
nodes.

A node is also called a vertex. Each element {u, v} ∈ E is also called an

edge. Node u is a neighbor of v ; the two vertices are adjacent to each

other.
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Example
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This is an undirected graph where there are 5 vertices v1, v2, ..., v5, and 5
edges e1, e2, ..., e5.
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Directed Graphs

An directed graph is a pair of (V ,E ) where:

V is a set of elements, each of which called a node.

E is a set of pairs (u, v) where u and v are nodes in V .

A node is also called a vertex. Each element {u, v} ∈ E is also called an
edge.

Each element (u, v) ∈ E is a directed edge. More specifically, it is an

outgoing edge of u and an incoming edge of v . Accordingly, v is an

out-neighbor of u and u is an in-neighbor of v .
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Example
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This is a directed graph (V ,E ) where there are 5 vertices v1, v2, ..., v5,

and 7 edges e1, e2, ..., e7. Edge e6, for instance, is an outgoing edge of v5
and an incoming edge of v4.
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Degrees

In an undirected graph, the degree of a vertex u is the number of
edges of u.

In a directed graph, the out-degree of a vertex u is the number
outgoing edges of u, and its in-degree is the number of its
incoming edges.

Example
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In the left graph, the degree of v5 is 2. In the right graph, the out-degree

of v3 is 2 and its in-degree is 1.
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Next, we discuss two common ways to store a graph: adjacency
list and adjacency matrix. In both cases, we represent each vertex
in V using a unique id in 1, 2, ..., |V |.
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Adjacency List – Undirected Graphs

Each vertex u ∈ V is associated with a linked list that enumerates all the
vertices adjacent to u.

Example
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v1 v2 v5 v4 v3

v2 v1

v3 v1

v4 v1 v5

v5 v4 v1

Space = O(|V |+ |E |).

Yufei Tao Basic Concepts of Graphs



9/11

Adjacency List – Directed Graphs

Each vertex u ∈ V is associated with a linked list that enumerates all the
out-neighbors of u.

Example
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Space = O(|V |+ |E |).
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Adjacency Matrix – Undirected Graphs

A |V | × |V | matrix A where A[u, v ] = 1 if (u, v) ∈ E , or 0 otherwise.

Example
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v1 v2 v3 v4 v5
v1 0 1 1 1 1
v2 1 0 0 0 0
v3 1 0 0 0 0
v4 1 0 0 0 1
v5 1 0 0 1 0

A must be symmetric.

Space = O(|V |2).

Think: How to store A so that, for any vertices u, v ∈ V , we can
find out if they have an edge in constant time?
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Adjacency Matrix – Directed Graphs

Defined in the same way as in the undirected case.

Example
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v1 v2 v3 v4 v5
v1 0 1 0 1 0
v2 0 0 0 0 0
v3 1 0 1 0 0
v4 0 0 0 0 1
v5 1 0 0 1 0

A may not be symmetric.

Space = O(|V |2).
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