
1/35

Depth First Search

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong

Yufei Tao Depth First Search

2/35

We have already learned breadth first search (BFS). Today, we will
discuss its “sister version”: the depth first search (DFS) algorithm. Our
discussion will once again focus on directed graphs, because the
extension to undirected graphs is straightforward.

DFS is a surprisingly powerful algorithm, and solves several classic

problems elegantly. In this lecture, we will see one such

problem—detecting whether the input graph contains cycles.

Yufei Tao Depth First Search

3/35

Paths and Cycles

Let G = (V ,E) be a directed graph.

Recall:

A path in G is a sequence of edges (v1, v2), (v2, v3), ..., (v`, v`+1),
for some integer ` ≥ 1. We may also denote the path as
v1 → v2 → ...→ v`+1.

We now define:

A path v1 → v2 → ...→ v`+1 is called a cycle if v`+1 = v1.

Yufei Tao Depth First Search

4/35

Example

a

b

c

d

e

f

g

h

i

A cycle: d → g → f → e → d .
Another one: d → g → i → f → e → d .

Yufei Tao Depth First Search

5/35

Directed Acyclic/Cyclic Graphs

If a directed graph contains no cycles, we say that it is a directed
acyclic graph (DAG). Otherwise, G is cyclic.

Example

a

b

c

d

e

f

g

h

i

a

b

c

d

e

f

g

h

i

Cyclic DAG

Yufei Tao Depth First Search

6/35

The Cycle Detection Problem

Let G = (V ,E) be a directed graph. Determine whether it is a DAG.

Yufei Tao Depth First Search

7/35

Next, we will describe the depth first search (DFS) algorithm to
solve the problem in O(|V |+ |E |) time, which is optimal (because
any algorithm must at least see every vertex and every edge once
in the worst case).

Just like BFS, the DFS algorithm also outputs a tree, called the
DFS-tree. This tree contains vital information about the input
graph that allows us to decide whether the input graph is a DAG.

Yufei Tao Depth First Search

8/35

DFS

At the beginning, color all vertices in the graph white and create an
empty DFS tree T .

Create a stack S . Pick an arbitrary vertex v . Push v into S , and color it
gray (which means “in the stack”). Make v the root of T .

Yufei Tao Depth First Search

9/35

Example

Suppose that we start from a.

a

b

c

d

e

f

g

h

i

a
DFS tree

S = (a).

Yufei Tao Depth First Search

10/35

DFS

Repeat the following until S is empty.

1 Let v be the vertex that currently tops the stack S (do not remove
v from S).

2 Does v still have a white out-neighbor?

2.1 If yes: let it be u.

Push u into S , and color u gray.
Make u a child of v in the DFS-tree T .

2.2 If no, pop v from S , and color v black (meaning v is done).

If there are still white vertices, repeat the above by restarting from an
arbitrary white vertex v ′, creating a new DFS-tree rooted at v ′.

DFS behaves like “exploring the web one click at a time”, as we
will see next.

Yufei Tao Depth First Search

11/35

Running Example

Top of stack: a, which has white out-neighbors b, d . Suppose we access
b first. Push b into S .

a

b

c

d

e

f

g

h

i

a
DFS tree

b

S = (a, b).

Yufei Tao Depth First Search

12/35

Running Example

After pushing c into S :

a

b

c

d

e

f

g

h

i

a
DFS tree

b

c

S = (a, b, c).

Yufei Tao Depth First Search

13/35

Running Example

Now c tops the stack. It has white out-neighbors d and e. Suppose we
visit d first. Push d into S .

a

b

c

d

e

f

g

h

i

a
DFS tree

b

c

d

S = (a, b, c , d).

Yufei Tao Depth First Search

14/35

Running Example

After pushing g into S :

a

b

c

d

e

f

g

h

i

a
DFS tree

b

c

d

g

S = (a, b, c , d , g).

Yufei Tao Depth First Search

15/35

Running Example

Suppose we visit white out-neighbor f of g first. Push f into S

a

b

c

d

e

f

g

h

i

a
DFS tree

b

c

d

g

f

S = (a, b, c , d , g , f).

Yufei Tao Depth First Search

16/35

Running Example

After pushing e into S :

a

b

c

d

e

f

g

h

i

a
DFS tree

b

c

d

g

f

e

S = (a, b, c , d , g , f , e).

Yufei Tao Depth First Search

17/35

Running Example

e has no white out-neighbors. So pop it from S , and color it black.
Similarly, f has no white out-neighbors. Pop it from S , and color it black.

a

b

c

d

e

f

g

h

i

a
DFS tree

b

c

d

g

f

e

S = (a, b, c , d , g).

Yufei Tao Depth First Search

18/35

Running Example

Now g tops the stack again. It still has a white out-neighbor i . So, push
i into S .

a

b

c

d

e

f

g

h

i

a
DFS tree

b

c

d

g

f

e

i

S = (a, b, c , d , g , i).

Yufei Tao Depth First Search

19/35

Running Example

After popping i , g , d , c , b, a:

a

b

c

d

e

f

g

h

i

a
DFS tree

b

c

d

g

f

e

i

S = ().

Yufei Tao Depth First Search

20/35

Running Example

Now there is still a white vertex h. So we perform another DFS starting
from h.

a

b

c

d

e

f

g

h

i

a

DFS forest

b

c

d

g

f

e

i

h

S = (h).

Yufei Tao Depth First Search

21/35

Running Example

Pop h. The end.

a

b

c

d

e

f

g

h

i

a

DFS forest

b

c

d

g

f

e

i

h

S = ().

Note that we have created a DFS-forest, which consists of 2 DFS-trees.

Yufei Tao Depth First Search

22/35

Time Analysis

DFS can be implemented efficiently as follows.

Store G in the adjacency list format.

For every vertex v , remember the out-neighbor to explore next.

O(|V |+ |E |) stack operations.

Use an array to remember the colors of all vertices.

Hence, the total running time is O(|V |+ |E |).

Yufei Tao Depth First Search

23/35

Recall that we said earlier that the DFS-tree (well, perhaps a DFS-
forest) encodes valuable information about the input graph. Next,
we will make this point specific, and solve the edge detection prob-
lem.

Yufei Tao Depth First Search

24/35

Edge Classification

Suppose that we have already built a DFS-forest T .

Let (u, v) be an edge in G (remember that the edge is directed from u to
v). It can be classified into

1 Forward edge: u is a proper ancestor of v in a DFS-tree of T .

2 Back edge: u is a descendant of v in a DFS-tree of T .

3 Cross edge: If neither of the above applies.

Yufei Tao Depth First Search

25/35

Example

a

b

c

d

e

f

g

h

i

a

DFS forest

b

c

d

g

f

e

i

h

Forward edges:
(a, b), (a, d), (b, c), (c , d), (c , e), (d , g), (g , f), (g , i), (f , e).

Back edge: (e, d).

Cross edges: (i , f), (h, d), (h, g).

Yufei Tao Depth First Search

26/35

After the DFS-forest T has been obtained, we can determine type
of each edge (u, v) in constant time. All that is required is to
augment the DFS algorithm slightly by remembering when each
vertex enters and leaves the stack.

Yufei Tao Depth First Search

27/35

Augmenting DFS Slightly

Maintain a counter c , which is initially 0. Every time a push or pop is
performed on the stack, we increment c by 1.

For every vertex v , define:

Its discovery time d-tm(v) to be the value of c right after v is
pushed into the stack.

Its finish time f -tm(v) to be the value of c right after v is popped
from the stack.

Define I (v) = [d-tm(v), f -tm(v)].

It is straightforward to obtain I (v) for all v ∈ V by paying O(|V |) extra

time on top of DFS’s running time. (Think: Why?)

Yufei Tao Depth First Search

28/35

Example

a

b

c

d

e

f

g

h

i

a

DFS forest

b

c

d

g

f

e

i

h

I (a) = [1, 16]
I (b) = [2, 15]
I (c) = [3, 14]
I (d) = [4, 13]
I (g) = [5, 12]
I (f) = [6, 9]
I (e) = [7, 8]
I (i) = [10, 11]
I (h) = [17, 18]

Yufei Tao Depth First Search

29/35

Parenthesis Theorem

Theorem: All the following are true:

If u is a proper ancestor of v in a DFS-tree of T , then I (u) contains
I (v).

If u is a proper descendant of v in a DFS-tree of T , then I (u) is
contained in I (v).

Otherwise, I (u) and I (v) are disjoint.

Proof: Follows directly from the first-in-last-out property of the
stack.

Yufei Tao Depth First Search

30/35

Cycle Theorem

Theorem: Let T be an arbitrary DFS-forest. G contains a cycle if and
only if there is a back edge with respect to T .

Proof: The “if-direction” is obvious. Proving the “only-if direction” is

more involved, and will be done later.

Yufei Tao Depth First Search

31/35

Cycle Detection

Equipped with the cycle theorem, we know that we can detect whether G
has a cycle easily after having obtained a DFS-forest T :

For every edge (u, v), determine whether it is a back edge in O(1)
time.

If no back edges are found, decide G to be a DAG; otherwise, G has at
least a cycle.

Only O(|E |) extra time is needed.

We now conclude that the cycle detection problem can be solved in
O(|V |+ |E |) time.

Yufei Tao Depth First Search

32/35

It remains to prove the cycle theorem. We will first prove an-
other important theorem, and then establish the cycle theorem as
a corollary.

Yufei Tao Depth First Search

33/35

White Path Theorem

Theorem: Let u be a vertex in G . Consider the moment when u is
pushed into the stack in the DFS algorithm. Then, a vertex v becomes a
proper descendant of u in the DFS-forest if and only if the following is
true:

We can go from u to v by traveling only on white vertices.

Proof: Will be left as an exercise (with solution provided).

Phrased differently, the theorem says that the search at u will get
stuck only after discovering all the vertices that can still be discov-
ered.

Yufei Tao Depth First Search

34/35

Example

Consider the moment in our previous example when g just entered the
stack. S = (a, b, c , d , g).

a

b

c

d

e

f

g

h

i

a
DFS tree

b

c

d

g

We can see that g can reach f , e, i by hopping on only white vertices.

Therefore, f , e, i are all proper descendants of g in the DFS-forest; and g

has no other descendants.

Yufei Tao Depth First Search

35/35

Proving the Only-If Direction of the Cycle Theorem

We will now prove that if G has a cycle, then there must be a back edge
in the DFS-forest.

Suppose that the cycle is v1 → v2 → ...→ v` → v1.

Let vi , for some i ∈ [1, `], be the vertex in the cycle that is the first to
enter the stack. Then, by the white path theorem, all the other vertices
in the cycle must be proper descendants of vi in the DFS-forest. This
means that the edge pointing to vi in the cycle is a back edge.

We thus have completed the whole proof of the cycle theorem.

Yufei Tao Depth First Search

