
1/7

Counting Sort

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong

Yufei Tao Counting Sort



2/7

We already know that sorting n integers can be done in O(n log n) time.

Today, we will see a variant of the sorting problem where the integers

come from a small domain.

Yufei Tao Counting Sort



3/7

Sorting in a Small Domain)

Problem Input:

A set S of n integers is given in an array of length n. Every integer is in
the range of [1,U]. It holds that U ≥ n.

Goal:

Produce an array that stores the integers of S in ascending order.

Yufei Tao Counting Sort



4/7

Counting Sort

Step 1: Let A be the array storing S . Create an array B of length U.
Initialize B by setting all its cells to 0.

Step 2: Carry out the following for every i ∈ [1, n]: set B[A[i ]] = 1.

Step 3: Generate the sorted order as follows:

for x = 1 to U

if B[x ] = 1 then append integer x to A.

Yufei Tao Counting Sort



5/7

Example

At the beginning

4 11213 128

Initialize array B (assuming U = 16)

4 11213 128 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BA

Setting n cells of B to 1

4 11213 128 0 1 0 1 0 0 0 1 0 0 1 1 1 0 0 0

BA

Final sorted list

4 112 13128 0 1 0 1 0 0 0 1 0 0 1 1 1 0 0 0

BA

Yufei Tao Counting Sort



6/7

Analysis of Counting Sort

Steps 1 and 3 take O(U) time.
Step 2 takes O(n) time.

Therefore, the overall running time of counting sort is O(n + U) = O(U).

For small U = O(n) (e.g., 1000n), the counting sort runs in O(n) time.

Yufei Tao Counting Sort



7/7

It is important to note that counting sort does not improve merge sort in

general! O(n + U) is incomparable to O(n log n). When U = O(n),

counting sort is faster, but when U = Ω(n2), merge sort is faster.

Yufei Tao Counting Sort


