
1/8

Linear Time Sorting in a Polynomial Domain
[Notes for ESTR2102]

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong

Linear Time Sorting in a Polynomial Domain



2/8

Recall that counting sort is able to sort n integers in the range from 1 to
U in O(n + U) time. The running time is expensive for large U. We will
significantly improve this by describing how to sort in O(n) time for any
U ≤ nc , where c is a constant (e.g., 10).

The new algorithm is called radix sort.

Linear Time Sorting in a Polynomial Domain



3/8

Without loss of generality, we will consider that n is a power of 2 (why
no generality is lost?). Hence, every integer can be represented by
c log2 n bits (in binary form), which we denote as bc log2 nbc log2 n−1...b2b1,
where b1 is the least significant bit.

For every integer bc log2 nbc log2 n−1...b2b1, we divide the bits into c
disjoint chunks, each of which contains log2 n bits:

The first chunk contains the right most log2 n bits, namely,
blog2 nblog2 n−1...b1.

The second chunk contains the next log2 n bits, namely,
b2 log2 nb2 log2 n−1...blog2 n+1.

...

The last chunk contains the left most log2 n bits, namely,
bc log2 nbc log2 n−1...b(c−1) log2 n+1

Linear Time Sorting in a Polynomial Domain



4/8

For any integer x = bc log2 nbc log2 n−1...b2b1, and any i ∈ [1, c], we can
obtain the i-th chunk of x as follows:

Calculate y = x mod ni . The binary form of y corresponds to the
rightmost i · log2 n bits of x . If i = 1, then return y . Otherwise,
proceed to the next step.

Return y/ni−1 (integer division).

We can prepare n, n2, n3, ..., nc in advance to ensure that y can
be calculated in O(1) time. The values of n, n2, n3, ..., nc can be
calculated in O(c) = O(1) total time.

Linear Time Sorting in a Polynomial Domain



5/8

Example

Suppose that c = 4, n = 16, and x = 011011000010 (i.e., 1730 in
decimal). To get its 2nd chunk, we do:

y = x mod n2 = 1730 mod 256 = 194

We return y/n = 194/16 = 12.

This is correct because 12 is 1100 in binary, namely, the 2nd chunk of x .

Linear Time Sorting in a Polynomial Domain



6/8

Stable sorting: The input is a set S of n key-value pairs of the
form (k , v), where k is the key and v is the value. These pairs are
given in an array A. Every key is in the range from 1 to n.

The goal is to produce an array B that stores all the pairs in non-
descending key order. Furthermore, the sorting must be stable in
the following sense. For any two pairs (k1, v1) and (k2, v2) such
that k1 = k2, if (k1, v1) is positioned earlier than (k2, v2) in A, this
must also be true in B.

We can adapt counting sort easily to solve the above problem in O(n)

time (details left to you).

Linear Time Sorting in a Polynomial Domain



7/8

Radix Sort

We now return to our problem. Let A be the input array of n integers.
We sort them by executing the stable counting sort algorithm of the
previous slide c times:

Stable-sort A according to their 1st chunks. Replace A with the
array output.

Stable-sort A according to their 2nd chunks. Replace A with the
array output.

...

Stable-sort A according to their c-th chunks. Replace A with the
array output.

Return the final A.

Linear Time Sorting in a Polynomial Domain



8/8

Analysis

Correctness guaranteed by stability.

Running time clearly c · O(n) = O(n).

Linear Time Sorting in a Polynomial Domain


