Comparison Lower Bound of Sorting

(Slides for ESTR2102)

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong

1/8

Yufei Tao Comparison Lower Bound of Sorting (Slides for ESTR2102)

We already know that n elements can be sorted in O(nlog n) time. This
lecture will prove that the time complexity is optimal for
comparison-based algorithms. In other words, every such algorithm must
incur Q(nlog n) time on at least one input.

2/8

Yufei Tao Comparison Lower Bound of Sorting (Slides for ESTR2102)

There are n! different ways to permute the n elements in the input array
A.

For n = 3, 6 permutations:

AlL], Al2], A3]
A1), A[B], Al2]
A[2], AlL], Al3]
Al2], A[3], A1]
AB], A[L], Al2]
AlB], Al2], AlM]

The goal of sorting is essentially to decide which of the n! permu-
tations is the final sorted order.

3/8

Yufei Tao Comparison Lower Bound of Sorting (Slides for ESTR2102)

(Com parison-Based Algorith m)

Formally, such an algorithm works by continuously shrinking a pool P of
possible permutations.

@ At the beginning, P contains all the n! permutations.

@ Every comparison allows the algorithm to discard all those
permutations in P that are inconsistent with the comparison’s result.

@ Eventually, P has only 1 permutation left, which is thus the final
sorted order.

In other words, at any moment, all the permutations that remain in P are
possible results. The algorithm cannot terminate as long as |P| > 2.

4/8

Yufei Tao Comparison Lower Bound of Sorting (Slides for ESTR2102)

(Shrinking the Pool: An Example)

P

(A[1], A[2], A[3]), (A[1], A[3], A[2])

(A[2], A[1], A[3]), (A[2], A[3], A[1])

(A[3], A[1], A[2]), (A[3], A[2], A[1])
Al < fi[z}/wj A2]

Py Py
(A[1], A[2], A[3]) (A[2], A[1], A[3])
(A[3], A1], A[2]) (A[2], A[3], A[1])
(A[1], A[3], A[2]) (A[3], A[2], A[1])

In general, each comparison allows us to shrink P to either P; or P;.

5/8
Yufei Tao

Comparison Lower Bound of Sorting (Slides for ESTR2102)

(Comparison—Based Algorithm: The Framework)

Framework

1. P < all the n! permutations of A

2. while |P| >1

3. make a comparison between elements e; and e

4 if e, < e, then

5 P <+ Py, where Py is the set of permutations in P

consistent with e; < e

else
P < P,, where P, is the set of permutations in P
consistent with e; > e

8. return the permutation in P

~No

Various algorithms differ in how they implement Step 3.

6/8

Yufei Tao Comparison Lower Bound of Sorting (Slides for ESTR2102)

(A Worst-Case Lower Bound)

@ Note that one of P; and P, contains at least half of the
permutations in P (i.e., either |Py| > |P|/2 or |P2]| > |P|/2).

@ The worst case happens when P always shrinks to the larger set
between P; and P;.

@ In this case, the size of P shrinks by at most half after each
comparison.

@ Hence, the number of comparisons required before |P| decreases to
1 is log,(n!).

The next slide shows log,(n!) = Q(nlog n).

7/8

Yufei Tao Comparison Lower Bound of Sorting (Slides for ESTR2102)

(A Worst-Case Lower Bound)

n
log,(n!) = Z log, i
i=1

z": log, i

2

i=n/2
> (n/2)logy(n/2)
= Q(nlogn).

We now conclude that any comparison-based algorithm must incur
Q(nlog n) time sorting n elements in the worst case.

8/8

Yufei Tao Comparison Lower Bound of Sorting (Slides for ESTR2102)

