Charging Arguments

[Notes for ESTR2102]

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong

1/18

Yufei Tao Charging Arguments

Recall

In general, if a data structure can process any n operations in f(n)
time, we say that it guarantees an amortized cost of @ per

operation.

Today, we will learn a charging argument technique to prove amortized
costs.

2/18

ging Arguments

(Ideas behind a Charging Argument)

Consider n operations on a data structure. The i-th (1 < < n)
operation incurs cost C;. Our goal is to prove:

> G < f(n). (1)
i=1

Suppose that we can assign a “fake” cost C < f(n") to the i-th operation
such that

Y 6<Y G)
i=1 i=1

(1) will then follow from (2).

3/18

Yufei Tao Charging Arguments

(Recall: the Dynamic Array Problem)

Let S be a collection of integers (not necessarily distinct). S is empty in
the beginning. Integers are then added to S one by one with insertions.

Let n be the number of elements in S currently. We want to maintain an
array A satisfying:
© A has length O(n).

@ For each i € [1, n], A[i] = x if x is the i-th integer added to S.

The above requirements need to be satisfied after every insertion.

4/18

Yufei Tao Charging Arguments

(Recau: The Expansion Algorithm)

5/18

Yufei Tao Charging Arguments

(Charging Argument)

Earlier, we proved that each insertion has amortized cost O(1). Next, we
give an alternative analysis for proving the same.

Our algorithm ensures an invariant:

After an expansion, the new array has size 2n, namely, there are n
empty positions.

6/18

Yufei Tao Charging Arguments

(Charging Argument)

Let C; be the actual cost of the i-th insertion.

We will assign an amortized cost C; to the i-th insertion.

7/18

Yufei Tao Charging Arguments

(Charging Argument)

For the n-th operation, first set C, = O(1).
If the array does not expand, done.

An array expansion takes at most cn time for some constant c.
= The previous expansion happened when S had n/2 elements.
= n/2 empty positions in the previous array.

= n/2 insertions have taken place since the previous expansion.

= Charge the cn cost over those n/2 insertions: for each of those
insertions, add ;%5 = 2¢ = O(1) to its amortized cost.

8/18

Yufei Tao Charging Arguments

Example

3
I
—

3
I
N

expanding cost charged on the insertion of the 2nd element

:

3
Il
w

E

expanding cost charged on the insertions of elements 3, 4

SEEEN

n=2_8 expanding cost charged on the insertions of elements 5-8

Each insertion is charged at most once.

9/18

Yufei Tao ing Arguments

(Charging Argument)

Convince yourself:

n n

Z G < ZC
i=1 i=1
and
C = 0(1).

Therefore, the total cost of all the n operations is O(n).

10/18

Yufei Tao Charging Arguments

(The Stack-with-Array Problem)

Let S be a collection of integers (not necessarily distinct). We want to
support:

@ push(e): add an integer e into S.
@ pop: remove the most recently inserted integer from S.

At any moment, let m be the number of elements in S. We want to store
all the elements of S in an array A satisfying:

@ A has length O(m)

@ A[1] is the least recently inserted element, A[2] the second least
recently inserted, ..., A[m] the most recently inserted.

We will denote by n the number of operations processed so far.

11/18

Yufei Tao Charging Arguments

(The Stack-with-Array Problem)

We will give an algorithm for maintaining such an array by handling
n operations in O(n) time, namely, each operation is processed in
O(1) amortized time.

12/18

Yufei Tao Charging Arguments

(The Stack-with-Array Problem)

@ A is full if all its cells are filled.

@ A s sparse if at most 1/4 of its cells are filled.

We will enforce an invariant:

At creation, an array is half full (i.e., half of its cells are filled).

Yufei Tao Charging Arguments

13/18

Carry out push(e) in the same way we perform an insertion in the
dynamic array problem.

14/18

ing Arguments

Perform pop as follows:

@ Return the last element of A and decrease n by 1. If A is sparse,
then:

o Initialize an array A’ of length 2n.
o Copy all the n elements of A over to A’
o Destroy A and replace it with A’

15/18

Yufei Tao Charging Arguments

11 pushes followed by 9 pops on an initially empty stack:

n =1, push
n =2, push

[[

T D

LT T T T T T T T

16/18

Yufei Tao Charging Arguments

n = 17 pop

[T T T e
n = 18, pop

LT T T T

n =19, pop

[[[

n = 20, pop

[[FE

17/18

Yufei Tao Charging Arguments

Think: how to prove that each operation incurs only O(1) amor-
tized cost?

Yufei Tao Charging Arguments

18/18

