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Recall

In general, if a data structure can process any n operations in f(n)
time, we say that it guarantees an amortized cost of @ per

operation.

Today, we will learn a charging argument technique to prove amortized
costs.
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(Ideas behind a Charging Argument)

Consider n operations on a data structure. The i-th (1 < < n)
operation incurs cost C;. Our goal is to prove:

> G < f(n). (1)
i=1

Suppose that we can assign a “fake” cost C < f(n") to the i-th operation
such that

Y 6<Y G )
i=1 i=1

(1) will then follow from (2).
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(Recall: the Dynamic Array Problem)

Let S be a collection of integers (not necessarily distinct). S is empty in
the beginning. Integers are then added to S one by one with insertions.

Let n be the number of elements in S currently. We want to maintain an
array A satisfying:
© A has length O(n).

@ For each i € [1, n], A[i] = x if x is the i-th integer added to S.

The above requirements need to be satisfied after every insertion.

4/18

Yufei Tao Charging Arguments



(Recau: The Expansion Algorithm)
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(Charging Argument)

Earlier, we proved that each insertion has amortized cost O(1). Next, we
give an alternative analysis for proving the same.

Our algorithm ensures an invariant:

After an expansion, the new array has size 2n, namely, there are n
empty positions.
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(Charging Argument)

Let C; be the actual cost of the i-th insertion.

We will assign an amortized cost C; to the i-th insertion.
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(Charging Argument)

For the n-th operation, first set C, = O(1).
If the array does not expand, done.

An array expansion takes at most cn time for some constant c.
= The previous expansion happened when S had n/2 elements.
= n/2 empty positions in the previous array.

= n/2 insertions have taken place since the previous expansion.

= Charge the cn cost over those n/2 insertions: for each of those
insertions, add ;%5 = 2¢ = O(1) to its amortized cost.
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Example
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expanding cost charged on the insertions of elements 3, 4

SEEEN

n=2_8 expanding cost charged on the insertions of elements 5-8

Each insertion is charged at most once.
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(Charging Argument)

Convince yourself:

n n

Z G < ZC
i=1 i=1
and
C = 0(1).

Therefore, the total cost of all the n operations is O(n).
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(The Stack-with-Array Problem)

Let S be a collection of integers (not necessarily distinct). We want to
support:

@ push(e): add an integer e into S.
@ pop: remove the most recently inserted integer from S.

At any moment, let m be the number of elements in S. We want to store
all the elements of S in an array A satisfying:

@ A has length O(m)

@ A[1] is the least recently inserted element, A[2] the second least
recently inserted, ..., A[m] the most recently inserted.

We will denote by n the number of operations processed so far.
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(The Stack-with-Array Problem)

We will give an algorithm for maintaining such an array by handling
n operations in O(n) time, namely, each operation is processed in
O(1) amortized time.
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(The Stack-with-Array Problem)

@ A is full if all its cells are filled.

@ A s sparse if at most 1/4 of its cells are filled.

We will enforce an invariant:

At creation, an array is half full (i.e., half of its cells are filled).
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Carry out push(e) in the same way we perform an insertion in the
dynamic array problem.
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Perform pop as follows:

@ Return the last element of A and decrease n by 1. If A is sparse,
then:

o Initialize an array A’ of length 2n.
o Copy all the n elements of A over to A’
o Destroy A and replace it with A’
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11 pushes followed by 9 pops on an initially empty stack:

n =1, push
n =2, push

[ [

T D

LT T T T T T T T
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n = 17 pop

[T T T e
n = 18, pop

LT T T T

n =19, pop

[ [ [

n = 20, pop

[ [ FE
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Think: how to prove that each operation incurs only O(1) amor-
tized cost?
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