CMSC 754
Computational Geometty

David M. Mount
Department of Computer Science
University of Maryland
Spring 2012

1Copyright, David M. Mount, 2012, Dept. of Computer Sciencejvérsity of Maryland, College Park, MD, 20742. These leetuotes were
prepared by David Mount for the course CMSC 754, Computati@eametry, at the University of Maryland. Permission to usgyc modify, and
distribute these notes for educational purposes and wifeeus hereby granted, provided that this copyright naigpear in all copies.

Lecture Notes 1 CMSC 754



Lecture 1: Introduction to Computational Geometry

What is Computational Geometry? “Computational geometry” is a term claimed by a number diedént groups.
The term was coined perhaps first by Marvin Minsky in his bo&erceptrons”, which was about pattern
recognition, and it has also been used often to describeitigws for manipulating curves and surfaces in solid
modeling. Its most widely recognized use, however, is taides the subfield of algorithm theory that involves
the design and analysis of efficient algorithms for problémaslving geometric input and output.

The field of computational geometry developed rapidly inldte 70’s and through the 80’s and 90’s, and it
still continues to develop. Historically, computation&agnetry developed as a generalization of the study of
algorithms for sorting and searching in 1-dimensional spacproblems involving multi-dimensional inputs.
Because of its history, the field of computational geomeay focused mostly on problems in 2-dimensional
space and to a lesser extent in 3-dimensional space. Whelem®hre considered in multi-dimensional spaces,
it is usually assumed that the dimension of the space is d soratant (say, 10 or lower). Nonetheless, recent
work in this area has considered a limited set of problemsiy igh dimensional spaces, particularly with
respect to approximation algorithms. In this course, ogusowill be largely on problems in 2-dimensional
space, with occasional forays into spaces of higher dinessi

Because the field was developed by researchers whose graimis in discrete algorithms (as opposed to nu-
merical analysis) the field has also focused more on theatescrature of geometric problems (combinatorics
and topology, in particular), as opposed to continuouseissurhe field primarily deals with straight or flat
objects (lines, line segments, polygons, planes, and pdig) or simple curved objects such as circles. This is
in contrast, say, to fields such as solid modeling, which $amuissues involving curves and surfaces and their
representations.

There are many fields of computer science that deal withrsglpioblems of a geometric nature. These include
computer graphics, computer vision and image processibgtics, computer-aided design and manufacturing,
computational fluid-dynamics, and geographic informatigatems, to name a few. One of the goals of com-
putational geometry is to provide the basic geometric toneksded from which application areas can then build
their programs. There has been significant progress madedewhis goal, but it is still far from being fully
realized.

A Typical Problem in Computational Geometry: Here is an example of a typical problem, called shertest path
problem Given a set polygonal obstacles in the plane, find the s$tastistacle-avoiding path from some given
start point to a given goal point (see Fig. 1). Although itdssgible to reduce this to a shortest path problem on
a graph (called theisibility graph, which we will discuss later this semester), and then appigrageometric
algorithm such as Dijkstra’s algorithm, it seems that byisg the problem in its geometric domain it should
be possible to devise more efficient solutions. This is onthefmain reasons for the growth of interest in
geometric algorithms.

~
2
~

5
The measure of the quality of an algorithm in computatioredrgetry has traditionally been itsymptotic
worst-case running timeThus, an algorithm running i®(n) time is better than one running i@ (n log n)
time which is better than one running @(n?) time. (This particular problem can be solved@{n? logn)

time by a fairly simple algorithm, i®(nlogn) by a relatively complex algorithm, and it can be approxirdate
quite well by an algorithm whose running time@nlogn).) In some caseaverage caseunning time is

Fig. 1: Shortest path problem.

Lecture Notes 2 CMSC 754



considered instead. However, for many types of geometpiatg(this one for example) it is difficult to define
input distributions that are both easy to analyze and reptative of typical inputs.

Strengths Computational Geometry:

Development of Geometric Tools:Prior to computational geometry, there were madyhocsolutions to ge-
ometric computational problems, some efficient, some itiefit, and some simply incorrect. Because of
its emphasis of mathematical rigor, computational geoyrteis made great strides in establishing correct,
provably efficient algorithmic solutions to many of theselgems.

Emphasis on Provable Efficiency: Prior to the development of computational geometry litteswanderstood
about the computational complexity of many geometric coaions. For example, given an encoding of
all the zip code regions in the USA, and given a latitude anditode from a GPS device, how long should
it take to compute the zip code associated with the locatidm® should the computation time depend on
the amount of preprocessing time and space available? Gatignal geometry put such gquestions on the
firm grounding of asymptotic complexity, and in some caséa# been possible to prove that algorithms
discovered in this area are optimal solutions.

Emphasis on Correctness/Robustnessrior to the development of computational geometry, marnk@soft-
ware systems that were developed were troubled by bugs@ifi®im the confluence of the continuous
nature of geometry and the discrete nature of computationefample, given two line segments in the
plane, do they intersect? This problem is remarkably trickgolve since two line segments may arise
from many different configurations: lying on parallel lindgng on the same line, touching end-to-end,
touching as in a T-junction. Software that is based on disatecisions involving millions of such inter-
section tests may very well fail if any one of these tests mmated erroneously. Computational geometry
research has put the robust and correct computing of geignpeimitives on a solid mathematical foun-
dations.

Linkage to Discrete Combinatorial Geometry: The study of new solutions to computational problems has
given rise to many new problems in the mathematical field s€rmdite combinatorial geometry. For ex-
ample, consider a polygon boundedbides in the plane. Such a polygon might be thought of as the
top-down view of the walls in an art gallery. As a functiongthow many “guarding points” suffice so that
every point within the polygon can be seen by at least oneasfelyuards. Such combinatorial questions
can have profound implications on the complexity of aldoris.

Limitations of Computational Geometry:

Emphasis on discrete geometry:There are some fairly natural reasons why computationamgéy may
never fully address the needs of all these applicationssaseal these limitations should be understood
before undertaking this course. One is the discrete nafuceraputational geometry. There are many
applications in which objects are of a very continuous re&ataomputational physics, computational fluid
dynamics, motion planning.

Emphasis on flat objects: Another limitation is the fact that computational geometigals primarily with
straight or flat objects. To a large extent, this is a consecpi®f CG'ers interest in discrete geomet-
ric complexity, as opposed to continuous mathematics. Warassues is that proving the correctness and
efficiency of an algorithm is only possible when all the conapions are well defined. Many computations
on continuous objects (e.g., solving differential andgnét equations) cannot guarantee that their results
are correct nor that they converge in specified amount of.tifdete that it is possible to approximate
curved objects with piecewise planar polygons or polyhedrais assumption has freed computational
geometry to deal with the combinatorial elements of mostefroblems, as opposed to dealing with
numerical issues.

Emphasis on low-dimensional spacesOne more limitation is that computational geometry has $ecupri-
marily on 2-dimensional problems, and 3-dimensional protd to a limited extent. The nice thing about
2-dimensional problems is that they are easy to visualidesasy to understand. But many of the daunting

Lecture Notes 3 CMSC 754



applications problems reside in 3-dimensional and highmedsional spaces. Furthermore, issues related
to topology are much cleaner in 2- and 3-dimensional spdzesin higher dimensional spaces.

Overview of the Semester:Here are some of the topics that we will discuss this semester

Convex Hulls: Convexity is a very important geometric property. A geoligedet isconvexif for every two
points in the set, the line segment joining them is also inseite One of the first problems identified in
the field of computational geometry is that of computing tmakest convex shape, called tbenvex hull
that encloses a set of points (see Fig. 2).

Convex hull Polygon triangulation

Fig. 2: Convex hulls and polygon triangulation.

Intersections: One of the most basic geometric problems is that of detenginihen two sets of objects in-
tersect one another. Determining whether complex objattssect often reduces to determining which
individual pairs of primitive entities (e.g., line segmgnintersect. We will discuss efficient algorithms for
computing the intersections of a set of line segments.

Triangulation and Partitioning: Triangulation is a catchword for the more general problerautfdividing a
complex domain into a disjoint collection of “simple” objec The simplest region into which one can
decompose a planar object is a triangledahedronin 3-d andsimplexin general). We will discuss
how to subdivide a polygon into triangles and later in the ester discuss more general subdivisions into
trapezoids.

Low-dimensional Linear Programming: Many optimization problems in computational geometry castated
in the form of a linear programming problem, namely, find thizeme points (e.g. highest or lowest) that
satisfies a collection of linear inequalities. Linear pargming is an important problem in the com-
binatorial optimization, and people often need to solvehspimblems in hundred to perhaps thousand
dimensional spaces. However there are many interestingems (e.g. find the smallest disc enclosing
a set of points) that can be posed as low dimensional linegramming problems. In low-dimensional
spaces, very simple efficient solutions exist.

Voronoi Diagrams and Delaunay Triangulations: Given a sefS of points in space, one of the most important
problems is the nearest neighbor problem. Given a pointighait in.S which point ofS is closest to it?
One of the techniques used for solving this problem is to sidelspace into regions, according to which
point is closest. This gives rise to a geometric partitiorsdice called &oronoi diagram(see Fig. 3).
This geometric structure arises in many applications ofigetoy. The dual structure, calledCelaunay
triangulationalso has many interesting properties.

Line Arrangements and Duality: Perhaps one of the most important mathematical structuiesmputational
geometry is that of an arrangement of lines (or generallyathengement of curves and surfaces). Giren
lines in the plane, an arrangement is just the graph formembgidering the intersection points as vertices
and line segments joining them as edges (see Fig. 4). WehwilV shat such a structure can be constructed
in O(n?) time.

The reason that this structure is so important is that maaglems involving points can be transformed
into problems involving lines by a method pbéint-line duality In the plane, this is a transformation that

Lecture Notes 4 CMSC 754



Fig. 3: Voronoi diagram and Delaunay triangulation.

Fig. 4: An arrangement of lines in the plane.

maps lines to points and points to lines (or generdtly- 1)-dimensional hyperplanes in dimensidno
points, and vice versa). For example, suppose that you wathetermine whether any three points of a
planar point set are collinear. This could be determine®(n?) time by brute-force checking of each
triple. However, if the points are dualized into lines, ti{as we will see later this semester) this reduces
to the question of whether there is a vertex of degree gréaderfour in the arrangement.

Search: Geometric search problems are of the following general f@iaen a data set (e.g. points, lines, poly-
gons) which will not change, preprocess this data set intata structure so that some type of query can
be answered as efficiently as possible. For example, cartbieléollowing problem, callegoint location
Given a subdivision of space (e.g., a Delaunay trianguigtidetermine the face of the subdivision that
contains a given query point. Another geometric searchlpmolis thenearest neighbor problengiven a
set of points, determine the point of the set that is clogeatgiven query point. Another examplerénge
searching given a set of points and a shape, called a range, eithet obueport the subset of points lie
within the given region. The region may be a rectangle, dispolygonal shape, like a triangle.

point location nearest neighbor searhcing

Fig. 5: Geometric search problems. The point-location gustermines the triangle containing The nearest-
neighbor query determines the pojnthat is closest tq.

Approximation: In many real-world applications geometric inputs are stitje measurement error. In such
cases it may not be necessary to compute results exacttg ia input data itself is not exact. Often the
ability to produce an approximately correct solution leedsuch simpler and faster algorithmic solutions.

Lecture Notes 5 CMSC 754



Consider for example the problem of computing the diameteat (is, the maximum pairwise distance)
among a set ofi points in space. In the plane efficient solutions are knowrtHis problem. In higher
dimensions it is quite hard to solve this problem exactly ircmless than the brute-force time®@fn?). It

is easy to construct input instances in which many pairs bftp@are very close to the diametrical distance.
Suppose however that you are willing to settle for an appnation, say a pair of points at distance at least
(1 —e)A, whereA is the diameter and > 0 is an approximation parameter set by the user. There exist
algorithms whose running time is nearly linearipassuming that is a fixed constant. As approaches
zero, the running time increases.

Lecture 2: Warm-Up Problem: Computing Slope Statistics

Slope Statistics: Today, we consider a simple warm-up exercise as an exampléypfcal problem in computational
geometry. To motivate the problem, imagine that a medigaésrment is run, where the therapeutic benefits of
a certain treatment regimen is being studied. A set pbints in real 2-dimensional spade?, is given. We
denote this set by? = {p1,...,pn}, Wherep; = (a;,b;), whereq, indicates the amount of treatment and
indicates the therapeutic benefit. The hypothesis is tltatasing the amount of treatment By: units results
in an increase in therapeutic benefitb = s(Aa), wheres is an unknown scale factor.

In order to study the properties of a statistician considers the set of slopes of the linesrjgipairs of a
points (since each slope represents the increase in besrefitunit increase in the amount of treatment). For
1 <i < j < n,define

b —b;

Sij = T

aj — a4
(see Fig. 6(a)). So that we don’t need to worry about infilipes, let us make the simplifying assumption that
the a-coordinates of the points are pairwise distinct, and tadhties, let us assume that the slopes are distinct.
LetS = {s;; | 1 <i < j<n}. Clearly|S| = () = n(n —1)/2 = O(n?). Although the se of slopes is
of quaderatic size, it is defined by a setropoints. Thus, a natural question is whether we can answistital
questions about the sétin time O(n) or perhapg)(nlogn), rather tharO(n?).

maximum

minimum
slope

slope

; " 8th smallest slope

(a) (b)
Fig. 6: The slope;; ; and the slope sef = {s; ; | 1 <i < j <n}.
Here are some natural questions we might ask about the (see Fig. 6(b)):

Min/Max: Compute the minimum or maximum slope f
k-th Smallest: Compute thei-smallest element of, given anyk, 1 < k < (3).
Average: Compute the average of the elementsof

Range counting: Given a pair of reals™ < s™, return a count of the number of elementsSothat lie in the
interval[s—, s™].

Lecture Notes 6 CMSC 754



Counting Negative Slopes and Inversionsin this lecture we will consider the last problem, that isugting the
number of slopes that lie within a given interyat , s*]. Before considering the general problem, let us consider
a simpler version by considering the case where= 0 ands™ = +oo. In other words, we will count the
number of pairgi, j) wheres, ; is nonnegative. This problem is interesting statisticdigcause it represents
the number of instances in which increasing the amount atrrent results in an increase in the therapeutic
benefit.

Our approach will be to count the number of pairs such4hats strictly negative. There is no loss of generality
in doing this, since we can simply subtract the count fl@r)]to obtain the number of nonnegative slopes. (The
reason for this other formulation is that it will allow us tatioduce the concept of inversion counting, which
will be useful for the general problem.) It will simplify th@resentation to make the assumption that the sets of
a-coordinates and-coordinates are distinct.

Suppose we begin by sorting the pointdin increasing order by their-coordinates. LeP = (p1,...,p,) be
the resulting ordered sequence, andBet (b, ...,b,) be the associated sequencé-@oordinates. Observe
that, forl < i < j <m, b, > b; ifand only if s; ; is negative. Fol < i < j < n, we say that the paif, ) is
aninversionfor B if b; > b;. Clearly, our task reduces to counting the number of ineesdfB (see Fig. 7(a)).

6 induces

3 negative slopes ) :
& p 3 inversions .

by [

: : b4:| 3 inversions DL [2 4! 8| Br:|O[1]5]9
— e by T N
L T b?):l R Rt bt
al a4 a3 ag m:[oTi2T4]5 6]

() (b)

Fig. 7: Inversion counting and application to counting riegsslopes.

Inversion Counting: Counting the number of inversions in a sequence nfimbers is a simple exercise, which can
be solved inO(nlogn) time. Normally, such exercises will be left for you to do, kirice this is the first time
to present an algorithm, let’s do it in full detail.

The algorithm is a simple generalization of the MergeSagbathm. Recall that MergeSort is a classical
example of divide-and-conquer. The sequence is partitiéme a left and right subsequence, denatgdand
Bg, each of size roughly./2. These two subsequences are sorted recursively, and therdtlting sorted
sequences are then merged to form the final sorted sequence.

To generalize this to inversion counting, in addition tauratng the sorted subsequences, the recursive calls
return the countg;, and/x of the inversionsvithin each of the subsequences. In the merging process we count
the inversiond that occurbetweerthe two subsequences. That is, for each eleme®ofwe compute the
number of smaller elements B, and add these t6. In the end, we return the total number of inversions,
Iy, +1r+ 1.

The algorithm is presented in the code block below. To médrgestibsequences, we maintain two indicaad

4, which indicate the current elements of the respective eynces3;, and Bz. We repeatedf/copy the
smaller of By [¢{] and Bg[j] to the merged sequendé. Because both subsequences are sorted, when we copy
By [i] to M, By[i] is inverted with respect to the eleme®g[1 ... j — 1], whose values are smaller than it (see
Fig. 7(b)). Therefore, we adfl— 1 to the count/ of inversions.

The main loop stops either whérr j exceeds the number of elements in its subsequence. When werexi
of the two subsequences is exhausted. We append the reqaleiments of the other subsequencéfo In

2More formally, we maintain the invariant th&ty, [i] > Br[j’] for 1 < j' < j — 1andBpg[j] > Br[i']for1 </ <i— 1.

Lecture Notes 7 CMSC 754



particular, ifi < |Bg|, we append the remainif@r| — i + 1 elements ofB;, to M. Since these elements are
all larger than any element @3y, we add(|Br| — i + 1)|Bg| to the inversion counter. (When copying the
remaining elements from¥g, there is no need to modify the inversion counter.) See the txtock below for
the complete code.

Inversion Counting

InvCount(B) [Input: a sequencds; Output: sorted sequenck/ and inversion count.]

(1) PartitionB into disjoint subset#; andBr, each of size at mogt. /2], wheren = |B|;
(2) (Br,Ir) « InvCoun{By);
(Br,Ir) < InvCoun{Bg);
(3) Leti<j < 1;1< 0; M + 0;
(4) While (i < |Br|andj < |Br|)
(@) if (Br[i] < Brlj]) appendB[i++]to M andl « I + (5 — 1);
(b) else append3r[j++]to M;
On exitting the loop, either > |Br| orj > |Bg|.
(5) Ifi < |Bg|,appendB[i...]to M andI < I + (|Br| — i+ 1)|Brl;
(6) Else (we haveg < |Bg|), appendBglj...]to M;
(7) return(M, Iy, + Ir + I);

The running time exactly matches that of MergeSort. It olibgsvell known recurrenc&(n) = 27(n/2) + n,
which solves ta)(n logn).

By combining this with the above reduction from slope ranganting over negative slopes, we obtain an
O(nlogn) time algorithm for counting nonnegative slopes.

General Slope Range Counting and Duality:Now, let us consider the general range counting problem[stets]
be the range of slopes to be counted. It is possible to adagthtve inversion-counting approach, subject to
an appropriate notion of “order”. In order to motivate thippeoach, we will apply a geometric transformation
that converts the problem into a form where this order is naggarent. This transformation, callpdint-line
duality will find many uses later in the semester.

To motivate duality, observe that a point[k? is defined by two coordinates, s#y, b). A nonvertical line
line in R? can also be defined by two parameters, a slopeyaimiercept. In particular, we associate a point
p = (a,b) with the liney = ax — b, whose slope is and whosey-intercept is—b. This line is calledb’s dual
and is denoted by*. (The reason for the negating the intercept will become egtahortly.) Similarly, given
any nonvertical line irR?, say/ : y = ax — b, we define itdlual to be the point* = (a, b). Note that the dual
is a involutory (self-inverse) mapping, in the sense thaj* = p and(¢*)* = ¢.

Later in the semester we will discuss the various propecti¢ise dual transformation. For now, we need only a
property. Consider two poinjs = (a;, b;) andp; = (a;, b;). The corresponding dual lines ate: y = a;z—b;

andp; : y = a;x — by, respectively. Assuming that # a; (that is, the lines are not parallel), we can compute
thexz-coordinate of their intersection point by equating thétigand sides of these two equations, which yields

b= b

a;x —b; = a;x—b; = T
aj; — G4

Interestingly, this is juss; ;. In other words, we have the following nice relationshipiven two points, the
z-coordinate of the intersection of their dual lines is theps of the line passing through the poigee Fig. 8).
(The reason for negating ttiecoordinate is now evident. Otherwise, we would get the riegaif the slope.)

Slope Range Counting in the Dual: Based on the above observations, we see that the problemtieg the slopes
of S that lie within the interva[s—, s*] can be reinterpreted in the following equivalent form. @Gieeset ofn
nonvertical lines irR? and given an intervdk—, s*], count the pairs of lines whose intersections lie within the
verticalslabwhose left side i = s~ and whose right side is™ (see Fig. 9(a)).

Lecture Notes 8 CMSC 754



T
L bih
2 aj—a;
(a) (b)

Fig. 8: Point-line duality and the relationship betweengtope of a line between two points and theoordinate of
the duals of the two points.

4 intersections
i1

51l 4 inversions

NN

() (b)

Fig. 9: Intersections in the vertical sl , s*] and inversion counting.

Lecture Notes 9 CMSC 754



How can we count the number of such intersection points efftti? Again, this can be done through inversion
counting. To see this, observe that two lines intersectiwitire slab if and only if the order of their intersection
with the left side of the slab is the inverse of their intetB®twith the right side of the slab.

We can reduce the problem to inversion counting, theresdpllows. First, consider the order in which the
lines intersect the left side of the slab (taken from top ttidr). In particular, the ling = a;x — b, intersects at

the pointy = a;s~ — b;. Sort the lines according in decreasing order of theseordinates, thus obtaining the
order from top to bottom, and renumber them from htaccording to this order (see Fig. 9(a)). Next, compute
the order in which the (renumbered) lines intersect thet sigte of the slab. In particular, lineis associated
with the valuey = a;s™ — b;. LettingY = (yi,...,v,) denote the resulting sequence, it is easy to see that
the number of inversions irY is equal to the number of pairs of lines that intersect withmslab. The time

to compute the intersection along the left side and sortrdaug to this order i) (n logn), and the time to
compute the intersections with the right side and countiliersions is als@(n logn). Therefore, the total
running time isO(n logn).

Negative Slope Range Counting RevisitedBy the way, you might wonder what the earlier instance of tiogn
negative slopes maps to in this instance. In this case teevaltis[—oo,0]. Observe that a vertical line at
x = —oo (from top to bottom) intersects the lines in increasing omfeslope, or equivalently, in order af
coordinates. Thus, sorting the points from top to bottonephy their intersection with— = —oc is equivalent
to the sorting by:-coordinates, which is just what we we did in the case of negatopes.

The right side of the slab is determined by the top-to-bottoder of intersections of the lines with vertical line
atz = 0. Clearly, linei intersects this vertical at = —b,. Therefore, counting the inversions of the sequence
-Y = (—v1,...,—yn) is equivalent to the process of counting inversions in tlggiseceB = (b, ..., b,),
exactly as we did before. Thus, the case of counting negslibgees can indeed be seen to be a special case of
this algorithm.

Review: In summary, we have seen how an apparently 2-dimensionaiefgic problem involving)(n?) (implicitly
defined) objects can be solved{n log n) time through reduction to simple 1-dimensional sortingaltms.
Namely, we showed how to solve the slope range counting @nobh O(nlogn) time. The problems of
computing the minimum and maximum slopes can also be satv@dri log n) time. We will leave this problem
as an exercise. The problem of computing kthth smallest slope is a considerably harder problem. It ts no
too hard to devise a randomized algorithm whose running t&w@(n log” n). Such an algorithm applies a
sort of “randomized binary search” in dual space to locagarkersection point of the desired rank. Improving
the expected running time ©@(n log n) time is a nontrivial exercise, and making the algorithm dateistic is
even more challenging. | do not know of an efficient solutiothte problem of computing the average slope.

The reduction of a geometric problem to 1-dimensional sgréind searching is quite common in computational
geometry. We will see other examples of this later in the steneWe have also seen a nice application of the
notion of point-line duality, which will be seen many momnés this semester.

Lecture 3: Convex Hulls

Convexity: Let us consider a fundamental structure in computationaiggry, called theonvex hull We will give
a more formal definition later, but, given a debf points in the plane, the convex hull &% denoted coni?),
can be defined intuitively by surrounding a collection ofrgsiwith a rubber band and then letting the rubber
band “snap” tightly around the points (see Fig. 10).

There are a number of reasons that the convex hull of a pdin$ s& important geometric structure. One is

that it is one of the simplest shape approximations for a spobimts. (Other examples include minimum area

enclosing rectangles, circles, and ellipses.) It can atsaded for approximating more complex shapes. For
example, the convex hull of a polygon in the plane or polybadn 3-space is the convex hull of its vertices.

Also many algorithms compute the convex hull as an initiabstin their execution or to filter out irrelevant
points. For example, théiameterof a point set is the maximum distance between any two poirtfseoset. It

Lecture Notes 10 CMSC 754



. . P conv(P)

Fig. 10: A point set and its convex hull.

can be shown that the pair of points determining the dianagteboth vertices of the convex hull. Also observe
that minimum enclosing convex shapes (such as the minimesn ractangle, circle, and ellipse) depend only
on the points of the convex hull.

Convexity: A setK is convexf given any pointg, ¢ € K, the line segmerig is entirely contained withid .

Boundedness:A convex body may be bounded, meaning that it can be enclogkéhva sphere of a fixed
radius or unbounded, meaning that it extends to infinity.nipdas of unbounded convex sets in the plane
include lines, rays, halfplanes, the region lying to one sifla line, and infinite cones. Given a liAgthe
set of points lying entirely to one side 6{possibly including itself) is called ahalfplane

Support: An important property of any convex sét in the plane is that at every poipton the boundary of
K, there exists a liné (or generally in hyperplane in higher dimensions) that esiskrougty such that
K lies entirely in one of the closed halfplanes defined by

Convex hull: The convex hullof any setP is the intersection of all convex sets that contaihsor more
intuitively, the smallest convex set that contaifsWe will denote this coni).

When computing convex hulls, we will usually taketo be a finite set of points. In such a case, ddhwwill be

a convex polygon. Generally could be an infinite set of points. For example, we could tala the convex
hull of a collection of circles. The boundary of such a shapela consist of a combination of circular arcs and
straight line segments.

Convex Hull Problem: The (planar)convex hull problenis, given a set of. points P in the plane, output a rep-
resentation ofP’s convex hull. The convex hull is a closed convex polygom, shmplest representation is a
counterclockwise enumeration of the vertices of the comal (Although points ofP might lie in the interior
of an edge of the boundary of the convex hull, such a pointtisoesidered a vertex. Since we will assume that
the points are irgeneral positionand in particular, no three are collinear, this issue da¢srise.) Although
the output consists only of the boundary of the hull, the eartwill of P is a convex polygon, which means that
it includes both the boundary and interior of this polygon.

Graham’s scan: We will present anO(nlogn) algorithm for convex hulls. It is a simple variation of a fanso
algorithm for convex hulls, calleGraham’s scanThis algorithm dates back to the early 70’s. The algoritem i
loosely based on a common approach for building geometrictstres calledhcremental constructiarin such
a algorithm object (points here) are added one at a time, lmndttucture (convex hull here) is updated with
each new insertion.

An important issue with incremental algorithms is the ordeisertion. If we were to add points in some
arbitrary order, we would need some method of testing whetteenewly added point is inside the existing
hull. It will simplify things to add points in some appropedy sorted order, in our case, in increasing order
of z-coordinate. This guarantees that each newly added pointtsde the current hull. (Note that Graham’s
original algorithm sorted points in a different way. It falithe lowest point in the data set and then sorted points
cyclically around this point. Sorting hy-coordinate seems to be a bit easier to implement, however.)

Since we are working from left to right, it would be convertigithe convex hull vertices were also ordered from
left to right. As mentioned above, the convex hull is a congek/gon, which can be represented as a cyclic
sequence of vertices. It will make matters a bit simpler ®tairepresent this convex polygon as two chains,

Lecture Notes 11 CMSC 754



one representing its upper part, called tipper hulland one representing the lower part, calledldveer hull
(see Fig. 11(a)).

~upper hull o

lower hull
(a) (b)

Fig. 11: Upper and lower hulls.

Thebreak pointcommon to both hulls will be the leftmost and rightmost va$ of the convex hull, that is, the
points of P having the smallest and largesttoordinates, respectively. (By general position, we nmeguae
there are no duplicate-coordinates, and so there will be a unique leftmost poidtuarique rightmost points.)
After building both, the two hulls can be concatenated insingle cyclic counterclockwise list.

Let us just consider how to compute the upper hull, sincedivet hull is similar. Recall that the points &fare
first sorted in increasing order of theircoordinates, and they will be added one-by-one. We staredhtices

of the current upper hull in a stadt, where the top of the stack corresponds to the most recesdigdapoint

of P. Let H|top] denote the top of the stack, and let ati¢top — 1] denote the element immediately below the
top. Observe that as we read the stack elements from toptanb@that is, from right to left) consecutive triples
of points of the upper hull will make a (strict) “left-handrtti (see Fig. 11(b)). As we push new points on the
stack, we will maintain this property, by popping points affthe stack if they fail to satisfy this property.

Turning and orientations: Before proceeding with the presentation of the algorithra,shiould first make a short
digression to discuss the meaning of “left-hand turn.” @ie& ordered triple of point&, ¢, r) in the plane,
we say that they havgositive orientationf they define a counterclockwise oriented triangle (see ERfa)),
negative orientatioiif they define a clockwise oriented triangle (see Fig. 12@pdzero orientationif they are
collinear, which includes as well the case where two or méthe points are identical (see Fig. 12(c)). Note
that orientation depends on the order in which the pointgaen.

orient(p, q,r) >0  orient(p,q,7) < 0 orient(p, ¢, r) =0
°r oA
R '.7" '7" .p: r
S ! o . “q E]
lp lp p
(2) (b) (©)

Fig. 12: Orientations of the ordered triflg, ¢, ).

Orientation is formally defined as the sign of the determirwdrthe points given in homogeneous coordinates,
that is, by prepending a 1 to each coordinate. For examptbeiplane, we define

1 ps Py
Orient(p,q,7) =det| 1 ¢ gy |.
1

Ty Ty

Lecture Notes 12 CMSC 754



Observe that in the 1-dimensional case, Ofignf) is justg — p. Hence itis positive ip < g, zero ifp = ¢, and
negative ifp > ¢. Thus orientation generalizes =, > in 1-dimensional space. Also note that the sign of the
orientation of an ordered triple is unchanged if the poimésteanslated, rotated, or scaled (by a positive scale
factor). A reflection transformation, e.gf(z,y) = (—z,y), reverses the sign of the orientation. In general,
applying any affine transformation to the point alters thrgn sif the orientation according to the sign of the
matrix used in the transformation.

Given a sequence of three pointsq, r, we say that the sequencg, ¢, 7) makes a (strict)eft-hand turnif
Orient(p, ¢, ) > 0.

Graham's algorithm continued: Let p; denote the next point to be added in the left-to-right ordgof the points
(see Fig. 13(a)). If the triplép,, H[top|, H[top — 1]) forms a strict left-hand turn, then we can simply pwpsh
onto the stack. Otherwise, we can infer that the middle paiitte triple H[top| cannot be on the upper hull,
and so we pop it off the stack. We repeat this until reachingsitipely oriented triple (see Fig. 13(b)), or there
are fewer than two elements on the stack. The popping preresswherp;’'s predecessor on the stack is its
predecessor on the convex hull (see Fig. 13(c)). The algorig presented in the code block below.

before adding p; processing p; after adding p;
(a) (b) (c)

Fig. 13: Graham’s scan.

Graham'’s Scan

(1) Sort the points according to increasing order of the@ioordinates, denote@., p2, - .., pn).
(2) pushp; and therp, onto H.
(3) fori <« 3,...,ndo:

(a) while (H| > 2 and Orientp;, H[top], H[top— 1]) < 0) pop H.

(b) pushp; onto H.

Correctness: Why is Graham'’s algorithm correct? We can show inductivebt the contents off at any stage of
the algorithm constitute the upper hull of the points thatehbeen processed so far. For the induction basis
(H = {p1,p=2}) this is trivially true. For the induction step, observetthais the rightmost point among the
points processed so far, and therefore it must lie on therupge Letp; be the neighboring vertex tg on
the upper hull of the first points (see Fig. 13(a)). It is easy to see thatmust be inH prior to the addition
of p;. Each pointp,, in H that lies betweep; andp; lies beneath the edggp;, and sop;, should not be part
of the upper hull aftep; is added. For each such point it is easy to see that Qpigpk, p;) < 0. It follows
that, as each of these poinis is tested within the while loop, it will be deleted. (We ardrigea bit sloppy
here, because this is not exactly the same orientation e toy the algorithm, singg is not necessarily;,’'s
predecessor on the stack. We'll leave fixing this proof upresxa@rcise.)

Finally, whenp; reaches the top of the stack either find that= p;, and hence there are less than two elements
on the stack, or we find that we finally have the triple thats$ias the orientation test. In either case, the loop
terminates ang, is pushed on the stack, as desired.

The lower hull can be computed by an essentially symmetgoréghm, but working from right to left instead.
Once the two hulls are computed, we simply concatenate thétis into a single circular list.

Lecture Notes 13 CMSC 754



Running-time analysis: We will show that Graham'’s algorithm runs @(n log ) time. Clearly, it takes this much

time for the initial sorting. After this, we will show th&®(n) time suffices for the rest of the computation.

Let d; denote the number of points that are popped (deleted) orepsowyp;. Because each orientation test
takesO(1) time, the amount of time spent processinds O(d; + 1). (The extrat1 is for the last point tested,
which is not deleted.) Thus, the total running time is proipoal to

n

Z(dl+1) = n—|—Zdl
=1

i=1

To bound) ", d;, observe that each of thepoints is pushed onto the stack once. Once a point is delieted i
never be deleted again. Since eaclgfoints can be deleted at most ong€, d; < n. Thus after sorting, the
total running time igD(n). Since this is true for the lower hull as well, the total tirs€i(2n) = O(n).

Convex Hull by Divide-and-Conquer: As with sorting, there are many different approaches toisglthe convex

hull problem for a planar point sét. Next we will consider anothed(n log n) algorithm, which is based on
the divide-and-conquer design technique. It can be vieweageneralization of the famous MergeSort sorting
algorithm (see any standard algorithms text). Here is alineubf the algorithm. It begins by sorting the points
by theirz-coordinate, irO(nlog n) time. The remainder of the algorithm is shown in the codeisedtelow.

Divide-and-Conquer Convex Hull

@)
@)

©)
4)

If | P| < 3, then compute the convex hull by brute forcefh(l) time and return.

Otherwise, partition the point sétinto two sets4 and B, where A consists of half the points with the lowestcoordinates
and B consists of half of the points with the highastoordinates.

Recursively computé/ 4 = conA) and Hg = conv B).

Merge the two hulls into a common convex hulf,, by computing the upper and lower tangents féx and Hz and
discarding all the points lying between these two tangents.

The asymptotic running time of the algorithm can be exprédsea recurrence. Given an input of size
consider the time needed to perform all the parts of the phareg ignoring the recursive calls. This includes the
time to partition the point set, compute the two tangentd,raturn the final result. Clearly the first and third of
these steps can be performedifn) time, assuming a linked list representation of the hullicegt. Below we

will show that the tangents can be computedifr) time. Thus, ignoring constant factors, we can describe the
running time by the following recurrence.

T(n) = 1 ifn<3
n = n+2T(n/2) otherwise.

This is the same recurrence that arises in Mergesort. Isig Eeshow that it solves t&(n) € O(nlogn) (see
any standard algorithms text). All that remains is showiog o compute the two tangents.

One thing that simplifies the process of computing the tatsgerthat the two point setd and B are separated
from each other by a vertical line (assuming no duplicat®ordinates). Let's concentrate on the lower tangent,
since the upper tangent is symmetric. The algorithm opetayea simple “walking” procedure. We initialize

a to be the rightmost point off , andb is the leftmost point off 5 (see Fig. 14(a)). These two points can be
computed in linear time.

Lower tangency is a condition that can be tested locally byréntation test involving the two vertices and
neighboring vertices on the hull. We iterate the followimgptloops, which marcl andb down, until they
reach the points lower tangency (see Fig. 14(a)—(c)). Gavpainta on the hull, leta.succ andu.pred denote
its successor and predecessor in CCW order about the hull.

The condition &b is not the lower tangent dff 4" can be implemented with the orientation test Or{ént, a.pred) >
0, and the other test fall g is analogous. Proving the correctness of this procedurditigearicky, but not too

Lecture Notes 14 CMSC 754



upper mngent

i1

P lower tangent R
(a) (b) (c)

Fig. 14: Computing the lower tangent.

Finding the Lower Tangent

LowerTangent(H 4, Hp) :
(1) Leta be the rightmost point off 4.
(2) Letbd be the leftmost point off 5.
(3) While (ab is not a lower tangent foH 4 and Hg) do
(&) While (@b is not a lower tangent té/ 4) doa < a.pred (moveu clockwise).
(b) While (@b is not a lower tangent té/z) do b < b.succ (move counterclockwise).
(4) Returnabd.

hard. (The issue is proving that the two inner while loopseneyo beyond the lower tangent points.) See
O’Rourke’s book out for a careful proof. The important thisghat each vertex on each hull can be visited at
most once by the search, and hence its running tini&is), wherem = |H4| + |Hg| < |A| + |B|. This is
exactly what we needed to get the overa(ln log n) running time.

Gift-Wrapping and Jarvis’s March: The next algorithm that we will consider is a variant on(am?) sorting algo-

rithm called SelectionSort. For sorting, this algorithrmpeatedly finds the next element to add to the sorted order

from the remaining items. The corresponding convex hulbaigm is calledJarvis’'s march which builds the
hull in O(nh) time by a process called “gift-wrapping”. The algorithm ogtes by considering any one point
that is on the hull, say, the lowest point. We then find the therdge on the hull in counterclockwise order.
Assuming thap, andp,_; were the last two points added to the hull, compute the ppihit maximizes the
angle/pi_1prq (see Fig. 15). Clearly, we can find the pointh O(n) time.

Fig. 15: Jarvis’s march.

After repeating thig: times, we will return back to the starting point and we areaddrhus, the overall running
time isO(nh). Note that ifh is o(logn) (asymptotically smaller thalvg n) then this is a better method than
Graham’s algorithm.

Lecture Notes 15 CMSC 754



One technical detail is that when we to find an edge from wiocstart. One easy way to do this is to jetbe
the point with the lowesy-coordinate, and let, be the point{—oc, 0), which is infinitely far to the right. The
point pg is only used for computing the initial angles, after whiclsitliscarded (see Fig. 15).

Lecture 4: More on Convex Hulls

Output Sensitive Convex Hull Algorithms: We have seen two algorithms for planar convex hull, Grahaigs-
rithm and the divide-and-conquer algorithm, that both mrOi(nlogn) time. We have also seen Jarvis’'s
algorithm, which runs irO(hn) time, where is the number of vertices on the hull.

Traditionally, algorithms are analyzed in terms of theimming time as a function of input size alone. However,
many geometric algorithms produce outputs whose sizesgraatly (from a constant up to a large polynomial
in n). For such problems, it is common to express running timefas&ion of both the input and the output

sizes. Such an algorithm is said todngtput sensitiveJarvis’s algorithm is such an example.

Whenh is asymptotically smaller thding n, Jarvis’s algorithm is superior to Graham'’s algorithm.c®ineither
algorithm is optimal in all cases, it is natural to wonder tee there is some “ultimate” planar convex hull
algorithm that is optimal with respect to bathandh.

Since the objective is to output the points on the hull inicyatder, it is pretty easy to see that this requires sort-
ing the points of the hull. It is well known that any comparidoased algorithm for sorting requir@¢n log n)
time2 If we ignoreh and consider the worst case in which all of the points aréoesrof the convex hull, then

it is pretty easy to prove that tHe(n logn) lower bound cannot be beaten. (We leave the proof of this as an
easy exercise. Later in these notes we present an outputiveetosver bound.)

Today, we present a planar convex hull algorithm, calledn@halgorithm, whose running time @(nlogh),

and we show that this is essentially the best possible. Whigealgorithm is too small an improvement over
Graham'’s algorithm to be practical, it is quite interestimpetheless from the perspective of the techniques that
it uses.

e Itis derived based on a combination of two slower algorith@mham’s and Jarvis's.

e Itis based on “knowing” the final number of vertices on thewvanhull. Since this number is not known,
it adopts an interesting guessing process to determinalit® (roughly). It is remarkable that the time to
run the guessing version is asymptotically the same as ihywolknown the number in advance!

How to Beat Graham and Jarvis: To motivate Chan’s algorithm, observe that the problem vtaham’s scan is
that it sorts all the points, and hence is doomed to havin@@nlogn) running time, irrespective of the size
of the hull. On the other hand, Jarvis's algorithm is not tediin this way. Unfortunately, it is way too slow if
there are many points on the hull.So, how can we combine thasimsights to produce a faster solution?

The first observation needed for a better approach is thag ifiope to achieve a running time ©@{n log h),

we can only afford a log factor depending bn So, if we run Graham'’s algorithm, we are limited to sorting
sets of size at mogt. (Actually, any polynomial imh will work as well. The reason is that, for any constant
log(h¢) = clog h = O(log h). For examplelog h andlog(h?) are asymptotically equivalent. This observation
will come in handy later on.)

How can we use this observation? Suppose that we partitireeset into roughly,/h subsets, each of siZe
We could compute the convex hull of each subset in tixge log h), which we’'ll call a convexmini-hull. The
total time to compute all the mini-hulls would &((n/h)hlogh) = O(nlogh). We are within our overall
time budget, but of course we would still have to figure out hownerge these mini-hulls into the final global
convex hull.

3Recall that asymptoti®-notation is the lower-bound analog to tenotation upper bound. Formally, we say that a functfgn) is Q2(g(n))
if, asn tends to infinity, the ratigi(n)/ f(n) is bounded. That isf grows at least as fast gs There are faster sorting algorithms that are not
comparison based, but they apply to discrete objects suahalsiategers and strings, not to real numbers.

Lecture Notes 16 CMSC 754



But wait! We do not know the value df in advance, so it would seem that we are stuck before we even ge
started. We will deal with this conundrum later, but, justei the ball rolling, suppose for now that we had an
estimate forh, call it h*, whose value is at least as largehadut not too much larger (sdy < h* < h?). If we

run the above partitioning process usisigrather tharh, the total running time to compute all the mini-hulls is
O(nlogh*) = O(nlogh).

Original point set Partition (A* = 8) and mini-hulls
o. o ° ¢ ‘
(a) (b)

Fig. 16: Partition and mini-hulls.

The partitioning of the points is done by any arbitrary metife.g., just break the input up into groups of size
roughly h*). Of course, the resulting mini-hulls might overlap one theo (see Fig. 16(a) and (b)). Although
we presume that* is a rough approximation tb, we cannot infer anything about the numbers of vertices on
the various mini-hulls. They could range frdwp toh*.

Merging the minis: The question that remains is how to merge the mini-hulls@sngle global hull. The ideais to
run Jarvis’s algorithm, but we treat each mini-hull as ifsital “fat point”. At each step, rather than computing
the angle from the current hull vertex to every point of thie we compute the tangent lines of the current hull
vertex to each of the mini-hulls, including the mini-hullntaining this vertex. (There are two tangents from a
point to a mini-hull, and we need to take care to compute tbpgrone.) Note that the current vertex is on the
global convex hull, so it cannot lie in the interior of any betmini-hulls. Among all these tangents, we take
the one that yields the smallest external angle. (The psasabustrated in Fig. 17(a).) Note that, even though
a point can appear only once on the final global hull, a singté-hull may contribute many points to the final
hull.

You might think that, since a mini-hull may have as many:asertices, there is nothing to be saved in com-
puting these tangents over the straightforward method.k&kes that each mini-hull is a convex polygon, and
hence it has quite a bit more structure than an arbitrangcttin of (unsorted) points. In particular, we make
use of the following lemma

Lemma: Consider a convex polygoR in the plane and a point that is external td<, such that the vertices
of K are stored in cyclic order in an array. Then the two tangeaois p to K (more formally, the two
supporting lines forK that pass througl) can each be computed in tin@(log m), wherem is the
number of vertices of(.

We will leave the proof of this lemma as an exercise, but theittea is that, since the vertices of the hull form
a cyclically sorted sequence, it is possible to adapt bisaarch to find the desired points of tangency with
(Fig. 17(b)). Using the above lemma, it follows that we campate the tangent from an arbitrary point to a
single mini-hull in timeO(log h*) = O(log h).

The final “restricted algorithm” (since we assume we havesitenateh*) is presented in the code block below.
(The kth stage is illustrated in Fig. 17(c).) Since we do not gelhekamow what the value of: is, it is possible
that our restricted algorithm may be run with a valuébdthat is not within the prescribed range< h* < h2.

Lecture Notes 17 CMSC 754



Jarvis’s algorithm on mini-hulls kth stage of Jarvis’s algorithm
: tangent

! binary
\ search

() (b) (c)

Fig. 17: Using Jarvis's algorithm to merge the mini-hulls.

(In particular, our final algorithm will maintain the guatas thath* < k2, but the lower bound of may not
hold.) If h* < h, when we are running the Jarvis phase, we will discover thar @s soon as we encounter
more thank* vertices on the hull. If this happens, we immediately teatenthe algorithm and announce the
algorithm has “failed”. If we succeed in completing the hwith »2* points or fewer, we return the final hull.

Chan’s Algorithm for the Restricted Hull Problem

RestrictedHull (P, h™) :
(1) Letr < [n/R™].
(2) PartitionP into disjoint subset®;, P, ..., P., each of size at mogt*.
(3) For@G « 1tor)
compute Hul[P;) using Graham’s scan and store the vertices in an ordered array.

(4) Letpg < (—o0,0) and letp; be the bottommost point d?.
(5) For(k < 1toh™)

(@) For¢<« 1tor)

compute point tangemt € Hull(P;), that is, the vertex of HU(IP;) that maximizes the anglépi_1prg;.

(b) Letpry1 be the poing € {qu,..., ¢} that maximizes the anglép._1prq.

(€) If pry1 < p1thenreturn(py,. .., px) (Success).
(6) (Unable to complete the hull aftéf iterations.) Return “Failureh™ is too small.”

The upshots of this are: (1) the Jarvis phase never perfammsdre tham* stages, and (2) ik < h*, the
algorithm succeeds in finding the hull. To analyze its rugrtime, recall that each partition has roughly
points, and so there are roughlyh* mini-hulls. Each tangent computation tak@flog ~*) time, and so each
stage takes a total @P((n/h*)logh*) time. By (1) the number of Jarvis stages is at migst so the total
running time of the Jarvis phase@h*(n/h*)log h*) = O(nlog h*).

Combining this with the fact that the Graham phase takéslog h*) time, the total time of the restricted
algorithm isO(n log h*). If we maintain the condition thdt* < h? then, irrespective of success or failure, the
running time will beO(nlog k).

Guessing the Hull's Size: The only question remaining is how do we know what value te ¢,*? Remember that,
if h* > h, the algorithm will succeed in computing the hull, andif < h2, the running time of the restricted
algorithm isO(n log k). Clearly we do not want to try a value af that is way too high, or we are doomed to
having an excessively high running time. So, we should starguess small, and work up to larger values until

Lecture Notes 18 CMSC 754



we achieve success. Each time we try a test valuec h, the restricted hull procedure may tell us we have
failed, and so we need to increase the value if

As a start, we could tryp* = 1,2, 3, ..., 4, until we luck out as soon ds" = h. Unfortunately, this would take
way too long. (Convince yourself that this would result itat time of O (nh log h), which is even worse than
Jarvis’'s march.)

The next idea would be to performdmubling search That is, let’s tryh* = 1,2,4,8,...,2%. When we first
succeed, we might have overshot the valué,dbut not by more than a factor of 2, thatlis< A* < 2h. The
convex hull will have at least three points, and clearly io> 3, we have2h < h2. Thus, this value oh*
will satisfy our requirements. Unfortunately, it turns dhat this is still too slow. (You should do the analysis
yourself and convince yourself that it will result in a rungitime ofO(nlog2 h). Better but still not the best.)

So if doubling is not fast enough, what is next? Recall thataneeallowed to overshoot the actual value of
h by as much a%?. Therefore, let's try repeatedly squaring the previoussgueln other words, let's try
h* =2,4,16,...,2% . Clearly, as soon as we reach a value for which the restrattgatithm succeeds, we have
h < h* < h2. Therefore, the running time for this stage will 6¢n log h). But what about the total time for
all the previous stages?

To analyze the total time, consider thie guessh; = 22'. Theith trial takes timeD(n log h}) = O(nlog2?') =
O(n2"). We know that we will succeed as soon/gs> h, thatis ifi = [lglgh]. (Throughout the semester,
we will uselg to denote logarithm base 2 atw when the base does not matter.Thus, the algorithm’s total
running time (up to constant factors) is

Iglgh lglgh

T(n,h) = Z n2' = n Z 27,
i=1 i=1

This is a geometric series. Let us use the well known fact}b?zto 2t = 2k+1 _ 1, We obtain a total running
time of
T(n,h) < n-2118l8h — 5. 9. 9l8leh — opjep = O(nlogh),

which is just what we want. In other words, by the “miracle’tioé geometric series, the total time to try all the
previous failed guesses is asymptotically the same asrtieefar the final successful guess. The final algorithm
is presented in the code block below.

Chan’s Complete Convex Hull Algorithm
Hull (P) :
(1) h* + 2. L + falil.
(2) while (L # fail)
(@) Leth* « min((h*)?,n).
(b) L <+ RestrictedHullP, h™).
(3) ReturnL.

Lower Bound (Optional): Next we will show that Chan'’s result is asymptotically opdirm the sense that any algo-
rithm for computing the convex hull of points withh points on the hull requireQ(n log k) time. The proof is
a generalization of the proof that sorting a sehafumbers requireQ(n log n) comparisons.

If you recall the proof that sorting takes at le&%i: log n) comparisons, it is based on the idea that any sorting
algorithm can be described in terms odlecision tree Each comparison has at most 3 outcomes=, or >).

Each such comparison corresponds to an internal node ingheThe execution of an algorithm can be viewed
as a traversal along a path in the resulting 3-ary tree. Thghhef the tree is a lower bound on the worst-case
running time of the algorithm. There are at leastifferent possible inputs, each of which must be reordered

4Whenlog n appears as a factor within asymptotic big-O notation, the lofishe logarithm does not matter provided it is a constants Eh
becauséog, n = log;, n/log, a. Thus, changing the base only alters the constant factor.

Lecture Notes 19 CMSC 754



differently, and so you have a 3-ary tree with at leasteaves. Any such tree must hat¥log,(n!)) height.
Using Stirling’s approximation for!, this solves td2(nlogn) height. (For further details, see the algorithms
book by Cormen, Leiserson, Rivest, and Stein.)

We will give an2(n log h) lower bound for the convex hull problem. In fact, we will gimaQ(n log h) lower
bound on the following simpler decision problem, whose atitp either yes or no.

Convex Hull Size Verification Problem (CHSV): Given a point sef? and integerh, does the convex hull of
P haveh distinct vertices?

Clearly if this take<2(n log h) time, then computing the hull must take at least as long. Ak sorting, we
will assume that the computation is described in the form dkaision tree. The sorts of decisions that a
typical convex hull algorithm will make will likely involverientation primitives. Let's be even more general,
by assuming that the algorithm is allowed to compngalgebraic function of the input coordinates. (This will
certainly be powerful enough to include all the convex higbaithms we have discussed.) The result is called
analgebraic decision tree

The input to the CHSV problem is a sequence2af = N real numbers. We can think of these numbers
as forming a vector in reaN-dimensional space, that i§;1, zo,...,2y) = Z € RY, which we will call a
configuration Each node of the decision tree is associated with a mubikeaalgebraic formula of degree at
mostd, whered is any fixed constant. For example,

f(2) = z124 — 22326 + 5z§,

would be an algebraic function of degree 2. The node branichese of three ways, depending on whether
the result is negative, zero, or positive. Each leaf of tisaltang tree corresponds to a possible answer that the
algorithm might give.

For each input vectof to the CHSV problem, the answer is either “yes” or “no”. Theadeall “yes” points

is just a subset of poinfg c RY, that is a region in this space. Given an arbitrary inpthe purpose of the
decision tree is to tell us whether this point is¥hor not. This is done by walking down the tree, evaluating
the functions ort’ and following the appropriate branches until arriving a¢af) which is either labeled “yes”
(meaningZ € Y) or “no”. An abstract example (not for the convex hull prah)eof a region of configuration
space and a possible algebraic decision tree (of degreestipign in the following figure. (We have simplified
it by making it a binary tree.) In this case the input is juseé pf real numbers.

The set Hierarchical partition Decision tree
4
9 3
1

Fig. 18: The geometric interpretation of an algebraic denitree.

We say that two points, 7 € Y are in the sameconnected componeaf Y if there is a path iRY from i to

¥ such that all the points along the path are in theYse{There are two connected components in the figure.)
We will make use of the following fundamental result on alged decision trees, due to Ben-Or. Intuitively, it
states that if your set ha&l connected components, then there must be at lgfakgaves in any decision tree
for the set, and the tree must have height at least the lbganf the number of leaves.

Lecture Notes 20 CMSC 754



Theorem: LetY € RY be any set and I&F be anyd-th order algebraic decision tree that determines member-
ship inW. If W hasM disjoint connected components, tHEmust have height at leaQt(log M) — N).

We will begin our proof with a simpler problem.

Multiset Size Verification Problem (MSV): Given a multiset of: real numbers and an integerconfirm that
the multiset has exactly distinct elements.

Lemma: The MSV problem requireQ(n log k) steps in the worst case in tHeth order algebraic decision tree
Proof: Interms of points ifR™, the set of points for which the answer is “yes” is

Y ={(21,22,...,2n) €ER™ : {z1,22,...,2n}] = k}.

It suffices to show that there are at leagt™—* different connected components in this set, because by
Ben-Or’s result it would follow that the time to test memigepsin Y would be

Q(log(k!k" %) —n) = Q(klogk + (n —k)logk —n) = Q(nlogk).

Considerthe all the tupldsy, . . ., z,,) with z1, . . . z;, setto the distinctintegers from 1k9andzy 1 . .. 2,
each set to an arbitrary integer in the same range. Cleaghe threk! ways to select the first elements
and k"% ways to select the remaining elements. Each such tuple leaslex distinct items, but it is
not hard to see that if we attempt to continuously modify ohéhese tuples to equal another one, we
must change the number of distinct elements, implying thah®f these tuples is in a different connected
component oly.

To finish the lower bound proof, we argue that any instance 8\Man be reduced to the convex hull size
verification problem (CHSV). Thus any lower bound for MSV plem applies to CHSV as well.

Theorem: The CHSV problem requirel(n log k) time to solve.

Proof: Let Z = (z1,...,2,) andk be an instance of the MSV problem. We create a poin{set...,p,}
in the plane where; = (z;, 27), and seth = k. (Observe that the points lie on a parabola, so that all
the points are on the convex hull.) Now, if the multigehas exactlyk distinct elements, then there are
exactlyh = k points in the point set (since the others are all duplicatésese) and so there are exactly
h points on the hull. Conversely, if there aiegoints on the convex hull, then there were exaétly k
distinct numbers in the multiset to begin with th
Thus, we cannot solve CHSV any faster thfafn log h) time, for otherwise we could solve MSV in the
same time.

The proof is rather unsatisfying, because it relies on tletfaat there are many duplicate points. You might
wonder, does the lower bound still hold if there are no daéis? Kirkpatric and Seidel actually prove a stronger
(but harder) result that the(n log k) lower bound holds even you assume that the points are distinc

Lecture 5: Line Segment Intersection

Geometric intersections: One of the most basic problems in computational geomettyaisdf computing intersec-
tions. Intersection computation in 2- and 3-space is cetatn@any different application areas.

¢ In solid modeling complex shapes are constructed by applyamrious boolean operations (intersection,
union, and difference) to simple primitive shapes. The pssds calledonstructive solid geomet(€SG).
Computing intersections of model surfaces is an essergiab the process.

e In robotics and motion planning it is important to know whemtobjects intersect farollision detection
andcollision avoidance

Lecture Notes 21 CMSC 754



e In geographic information systems it is often usefubt@rlaytwo subdivisions (e.g. a road network and
county boundaries to determine where road maintenancensijilities lie). Since these networks are
formed from collections of line segments, this generatesoalpm of determining intersections of line
segments.

e In computer graphicsiay shootingis an important method for rendering scenes. The computto
most intensive part of ray shooting is determining the seetion of the ray with other objects.

Line segment intersection: The problem that we will consider is, given a setof n line segments in the plane,
report (that is, output) all points where a pair of line segtaéntersect. We assume that each line segment is
represented by giving the coordinates of its two endpoints.

Observe that line segments can intersect in as few as zero and as m&(fy as O(n?) different intersection
points. We could settle for af(n?) time algorithm, claiming that it is worst-case asymptdticaptimal, but it
would not be very useful in practice, since in many instamdéstersection problems intersections may be rare.
Therefore, it seems reasonable to designatput sensitive algorithpihat is, one whose running time depends
not only on the input size, but also on the output size.

Given a sefS of n line segments, lef = I(.S) denote the number of intersections. We will express theingnn
time of our algorithm in terms of both and/. As usual, we will assume that the line segments are in genera
position. In particular, we assume:

(1) The z-coordinates of the endpoints and intersection points Wrdisinct. (This implies that no line
segment is vertical.)

(2) If two segments intersect, then they intersect in a sipgint. (They are not collinear.)
(3) No three line segments intersect in a common point.

Generalizing the algorithm to handle degeneracies effigiéan interesting exercise. (See our book for more
discussion of this.)

Plane Sweep Algorithm: Let us now consider the algorithm for reporting the segmatgrgections. LefS =
{s1,...,s,} denote the line segments whose intersections we wish to utemprhe method, calledlane
sweepis a fundamental technique in computational geometry. &heesa 2-dimensional problem by simulating
the process of sweeping a 1-dimensional line across the plare intersections of the sweep line with the seg-
ments defines a collection of points along the sweep line. Westere these points in a data structure, which
we call thesweep-line status

Although we might visualize the sweeping process as a cootis one, there is a discrete seeoEnt points
where important things happen. As the line sweeps from defight, points are inserted, deleted, and may
swap order along the sweep line. Thus, we reduce a statim@rdiional problem to a dynamic 1-dimensional
problem.

There are three basic elements that are maintained at amyiriimny plane-sweep algorithm: (1) the partial
solution that has already been constructed to the left adwreep line, (2) the current status of objects along the
sweep line itself, and (3) a (sub)set of the future eventetprbcessed (see Fig. 19).

The key to designing an efficient plane-sweep algorithmliraedetermining the best way to store and update
these three elements as each new event is process. Letidaoeach of these elements in greater detail in the
context of line-segment intersection.

Sweep line status:We will simulate the sweeping of a vertical lidefrom left to right. The sweep-line status will
consist of the line segments that intersect the sweep lirtedscsay, from top to bottom. In order to maintain
this set dynamically, we will store them in a data structureich will be described below.

Note that each time the sweep line moves, allitfeordinates of the intersection points change as wellillit w
be too inefficient to continually update all thyecoordinates each time the sweep line moves. We exploititte f
that it is not the actuaj-coordinates that we really care about, just tlwetter. To do this, rather than storing

Lecture Notes 22 CMSC 754



sweep line

4 future event point

o discovered intersection

Fig. 19: Plane sweep.

y-coordinates, for each line segmentthat intersects the sweep line, we store the coefficientd;) of the
equation of the line, e.gy, = a;z + b;. (These coefficients can easily be derived from the segnmeiants.)
In this way, whenever the sweep line arrives at a newoordinate, say: = xy, we can determine the current
y-coordinate at which segmestintersects the sweep line aéro) = a;x¢ + b; (see Fig. 20). As we shall see,
only a constant number of such intersections need to beatealat each event point.

51 :
‘y1 () = aqxp + b
(ar. by) E@/1( 0) = a1 + by
82%2%“&
(ag,bo)
.y
T =1

Fig. 20: The sweep-line status stores coefficients of theediquations, and thgcoordinates of the intersections are
computed as needed.

Events and Detecting Intersections:lt suffices to process events only when there is a change isweep-line
status. These-coordinates are callegivent points For our application, we have three types of event points,
corresponding to when the sweep line encounters (1) thenefipoint of a segment, (2) the right endpoint of a
segment, and (3) an intersection point between two segments

Note that endpoint events can be presorted before the swipsp fin contrast, intersection events will be
discovered as the sweep executes. It is important that eaci lee detected before the actual event occurs. Our
strategy will be as follows. Whenever two line segments bexadjacentalong the sweep line, we will check
whether they have an intersection occurring to the righhefdweep line. If so, we will add this new event to a
priority queue of future events. This priority queue will §@rted in left-to-right order by:-coordinates.

A natural question is whether this is sufficient. In partiouif two line segments do intersect, is there necessarily
some prior placement of the sweep line such that they areadja Happily, this is the case, but it requires a
proof.

Lemma: Consider a seb of line segments in general position, and consider two seggng, s; € S that

intersect in some point = (p,,py). There is a placement of the sweep line prior to this evert tuat
s; ands; are adjacent along the sweep line.

Lecture Notes 23 CMSC 754



Proof: By general position, it follows that no three lines intetsa@ common point. Therefore if we consider
a placement of the sweep line that is infinitesimally to tfiedéthe intersection point, the line segmenis
ands; will be adjacent along this sweep line. Consider the eveimitjgowith the largest-coordinate that
is strictly less tham,.. Since there are no events betwegrandp,., there can be no segment intersections
within the vertical slab bounded hyon the left andp on the right (the shaded region of Fig. 20), and
therefore the order of lines along the sweep line after msiogq will be identical the order of the lines
along the sweep line just prigt Therefores; ands; are adjacent immediately after processing event

Fig. 21: Correctness of the “adjacent segment rule”.

When two formerly adjacent segments cease to be adjacenti{ecgquse a new segment is discovered between
them), we will delete the event from the queue. While this isfaomally necessary, it keeps us from inserting
the same event point over and over again, and hence we do edtmevorry about the existence of duplicate
events from the priority queue.

Data structures: In order to perform the sweep, we will need two data strusture

Event queue: This holds the set of future events, sorted by increasiegordinate. Each event in this set con-
tains the auxiliary information of what type of event thigleft-endpoint, right-endpoint, or intersection)
and which segment(s) are involved. The operations thatitites structure should support are:

e insert a new event with a givertcoordinate

e extract the event with the smallestcoordinate

e delete an existing event
A typical priority queue data structure (e.g., a binary heagped onr) is adequate for performing the first
two operations, but deletion is a problem. Instead, we st@events in a sorted dictionary (e.qg., either a

balanced binary tree or a skip list) sortedabgoordinates. Each of the above operations can be performed
in O(log m) time, wherem is the current number of events.

The number of events is never more th@aMm), since there are at mostleft endpointsy right endpoints,
andn — 1 pairs of adjacent segments on the sweep line. Therefor, @ant-queue operation can be
performed in time) (log n).

Sweep-line status: To store the sweep-line status, we maintain an orderecbdanty (e.g., a balanced binary
tree or skip-list) which contains the lines that interséw sweep line sorted from top to bottom. As
mentioned earlier, each entry stores the coefficients diiieeequation, not the actual intersection point.
(You may want to take a moment to convince yourself that therations of maintaining the dictionary
can be performed “on the fly” given thecoordinate of the current sweep line.)

This data structure needs to support the following opematigiven ther-coordinate of the current sweep
line:

e insert a new line segment (whose left endpoint coincidels m)it

e delete an existing line segment (whose right endpoint edéscwithz).

e swap two adjacent entries (whose intersection point cdexivithz).

Lecture Notes 24 CMSC 754



e determine the segment immediately above or below any gisgment on the sweep line.

Since there are at most segments on the sweep line at any time, the dictionary amiai mostn
elements, and so these operations can be perform@dirg n) time each.

Processing Events:All that remains is explaining how to process the events.sThipresented in the code block
below. (See our text for a more careful implementation.) Wméous cases are illustrated in Fig. 21.

Line Segment Intersection Reporting
(1) Insert all of the endpoints of the line segments$afto the event queue. The initial sweep-line status is empty.

(2) While the event queue is nonempty, extract the next event in theeqlibere are three cases, depending on the type of event:

Left endpoint:
(a) Insert this line segmentinto the sweep-line status, based ongheoordinate of this endpoint.

(b) Lets’ ands” be the segments immediately above and bedam the sweep line. If there is an event associated
with this pair, remove it from the event queue.

(c) Test for intersections betweerands’ and between ands” to the right of the sweep line. If so, add the corre-
sponding event(s) to the event queue.

Right endpoint:
(a) Lets’ ands” be the segments immediately above and belmm the sweep line.
(b) Delete segmentfrom the sweep-line status.

(c) Test for intersections betweahands” to the right of the sweep line. If so, add the corresponding event to the
event queue.

Intersection:
(a) Report this intersection.
(b) Lets’ ands” be the two intersecting segments. Swap these two line segments in the sveegtadirs (they must
be adjacent to each other).
(c) As aresult,s’ ands” have changed which segments are immediately above and below thenové&any old
events due to adjacencies that have ended and insert any new interseetios from adjacencies that have been
created.

Observe that our algorithm is very careful about storingrsgction events only for adjacent elements in the
priority queue. For example, consider two segmenénd s’ that intersect at a segment such that, when
the two are initially added to the sweep-line status, theyadjacent. Therefore, the intersection pairis
added to event queue (see Fig. 23). As intervening segmensean between them, they successfully become
non-adjacent and then adjacent again. Because our algoisticareful about deleting intersections between
non-adjacent entries in the sweep-line status, the g@vientepeated deleted and reinserted. If we had not done
this, we would have many duplicate events in the queue.

Analysis: Altogether, there aren—+ 1 events processed. Each event involves a constant amountlofwd a constant
number of accesses to our data structures. As mentioneé adash access to either of the data structures takes
O(logn) time. Therefore, the total running timedX (2n + I)logn) = O(nlogn + I'logn).

Is this the best possible? There is an algorithm that ackiaveunning time oO(nlogn + I). It can be
shown that this is asymptotically optimal. CleaflyT) time is needed to output the intersections. The lower
bound ofQ2(n log n) results from a reduction from the element uniqueness pnob@iven a list ofn numbers
(z1,...,z,) theelement uniqueness problexsks whether these numbers are all distinct. Element un@gse

is known to have a lower bound 6(nlog n) in the algebraic decision tree model of computation. (It ban
solved inO(n) time using hashing, but the algebraic decision tree modes dot allow integer division, which

is needed by hashing.)

The reduction is as follows. Convert eachinto a vertical segment passing through the p¢int 0), clearly
two segments intersect if and only if two elements of thedrstidentical. You might complain that this lower-
bound example violates our general position assumptiatsidie that if you were to apply an very tiny random
rotation to each line segment, the segments would now benergeposition.

Lecture Notes 25 CMSC 754



85\ S5E\ 85\1\
: : Sy swap S3, S4

52

Dy
S)—"» ¢ 50 iow ¢ addevent s
left-endpoint event right-endpoint event left-endpoint event
s s
S5 o o S5 S5 S5
S4 S4
54 54 54 53
53 53
I e I B - |83 53| > | 54
52 52
S1 52 52 52
S 51 °1 S S S
0 S0 S0 0 0 0

Fig. 22: Plane-sweep algorithm event processing.

" delete event D

Fig. 23: An intersection event that is repeatedly insertatideleted from the event queue

Lecture Notes 26 CMSC 754



Computing Segment Intersections (Optional): We have assumed that the primitive of computing the intéis®c
point of two line segments can be performed exactlifi) time. Let us see how to do this. Leb andcd
be two line segments in the plane, given by their endpoiotsexamplez = (a,, a,). First observe that it is
possible to determinehetherthese line segments intersect, simply by applying an apiatepcombination of
orientation tests. (We will leave this as an exercise.) H@awethis alone is not sufficient for the plane-sweep
algorithm.

One way to determine the point at which the segments inteiséo use gparametric representatioof the
segments. Any point on the line segmehtcan be written as a convex combination involving a real patam

s:
p(s) = (1 —s)a+ sb for0 < s <1.

Similarly for cd we may introduce a parameter
qt) =1 —t)c+td foro0<t<1.

An intersection occurs if and only if we can fiscand¢ in the desired ranges such thdt) = ¢(t). Thus we
obtain the two equations:

(1 —=38)ag +sb, = (1 —t)c, +td, and (1 —s)ay+sb, = (1 —t)cy +tdy.

The coordinates of the points are all known, so it is just gognexercise in linear algebra to solve foandt.

In general, such a linear system could be solved using Géinssation and floating-point computations. If the
denominator of the result is 0, the line segments are eithi&llpl or collinear. These special cases can be dealt
with some care. If the denominator is nonzero, then we obaimes fors andt as rational numbers (the ratio
of two integers). Once the values ofind¢ have been computed all that is needed is to check that boih are
the intervall0, 1].

Exact Computation (Optional): The above approach is fine for producing a floating-pointasgntation of the fi-
nal result. Floating-point calculations are intrinsigadjpproximate, and so the question arises of whether the
algorithm is formally correct.

Itis noteworthy that our plane-sweep algorithm does nataillyt require computing the coordinates of the inter-
section points. Two discrete primitives suffice: (1) theigbto compare the:-coordinates of two intersection
points (for ordering intersection events) and (2) the gbilb compare they-coordinates of the intersection
points of two segments with the vertical sweep line (for artlesegments on the plane-sweep status).

If the input coordinates are integers, it is possible to quenfrational number calculations and comparisons
exactly using multiple-precision integer arithmetic. larficular, each rational numbey'r is maintained as

a pair (¢, ), by explicitly storing the numerator and denominator aggets. It is possible add, subtract,
multiply and divide rational numbers in this form, by pur@lyeger operations. (For examplg,/r1 + g2/r2 =
(q1r72+qor1)/r172.) Inthis way, we never need to perform divisions. We can asiehe solutions to the above
system of linear equations applying Cramer’s rule, whicpregses the solution as a ratio of two determinants
with integer coordinates. Thus, the comparisons requiyetthd algorithm can be computed exactly, if desired.
The price we pay is the need to implement some form of mulppéeision integer arithmetic.

Lecture 6: Polygon Triangulation

The Polygon Triangulation Problem: Triangulation is the general problem of subdividing a spatomain into sim-
plices, which in the plane means triangles. In its simpleshf a simple polygon is given (that is, a planar region
that is defined by a closed, simple polygonal curve), and bjective is to subdivide the polygon into triangles
(see Fig. 24). Such a subdivision is not necessarily unigné,there may be other criteria to be optimized in
computing the triangulation.

Triangulating simple polygons is important for many reasohhis operation useful, for example, whenever it
is needed to decompose a complex shapes a set of disjoiresisiapes. Note that in some applications it is

Lecture Notes 27 CMSC 754



Simple polygon A triangulation Dual graph

Fig. 24: Polygon triangulation.

desirable to produce “fat” (nearly equilateral) trianglest we will not worry about this issue in this lecture. A
triangulation provides a simple graphical representaticthe polygon’s interior, which is useful for algorithms
that operate on polygons. In particular, consider a graptselvertices are the triangles of the triangulation and
two vertices of this graph are adjacent if the associatedgtes are adjacent (see Fig. 24(c)). This is called the
dual graphof the triangulation. It is easy to show that such a graptfieetree that is, it is an acylic, connected
graph.

This simple problem has been the focus of a remarkably langeber of papers in computational geometry
spanning a number of years. There is a simple naive polyridimia algorithm for the planar case (as opposed
to possibly nonconvex polyhedra in higher dimensions). iflbe is based on repeatedly adding “diagonals.” We
say that two points on the boundary of the polygonséleif the interior of the line segment joining them lies
entirely within the interior of the polygon. Definedgagonalof the polygon to be the line segment joining any
pair of visible vertices. Observe that the addition of a dizaj splits the polygon into two polygons of smaller
size. In particular, if the original polygon hasvertices, the diagonal splits the polygon into two polyguiith

ny andns vertices, respectively, where,, no, < n, andn; + no = n + 2. Any simple polygon with at least
four vertices has at least one diagonal. (This seemingljooisvfact is not that easy to prove. You might try it.)
A simple induction argument shows that the final number ajalieals is» — 3 and the final number of triangles
isn — 2.

The naive algorithm operates by repeatedly adding diagokhifortunately, this algorithm is not very efficient
(unless the polygon has special properties, for exampleyestty) because of the complexity of the visibility
test.

There are very simpl®(n log n) algorithms for this problem that have been known for manygea long-
standing open problem was whether there exist®&m) time algorithm. (Observe that the input polygon is
presented as a cyclic list of vertices, and hence the data s®me sense “pre-sorted”, which precludes an
Q(nlogn) lower bound.) The problem of a linear time polygon triangjolawas solved by Bernard Chazelle
in 1991, but the algorithm is so amazingly complicate. Uslether properties of the triangulation are desired,
theO(nlogn) algorithm that we will present in this lecture is quite preatand probably preferable in practice
to any of the “theoretically” faster algorithms.

Our approach is based on a two-step process (although witteacleverness, both steps could be combined
into one algorithm).

e First, the simple polygon is decomposed into a collectiosiwmipler polygons, callethonotone polygons
This step take®)(nlogn) time.

e Second, each of the monotone polygons is triangulated agharand the result are combined. This step
takesO(n) time.

The triangulation results in a planar subdivision. Suchkalausion could be stored as a planar graph or simply

as a set of triangles, but there are representations that@e suited to representing planar subdivisions. One
of these is calledlouble-connect edge ligpr DCEL). This is a linked structure whose individual eietcon-

sist of the vertices (0-dimensional elements), edgesrtiedsional elements), triangular faces (2-dimensional

elements). Each entity is joined through links to its nemfiiy elements. For example, each edge stores the
two vertices that form its endpoints and the two faces tieadti either side of it.

Lecture Notes 28 CMSC 754



We refer the reader to Chapter 2 of our text for a more detaiésstription of the DCEL structure. Henceforth,
we will assume that planar subdivisions are stored in a ntahae allows local traversals of the structure to be
performedO(1) time.

Monotone Polygons: Let's begin with a few definitions. Aolygonal curvds a collection of line segments, joined
end-to-end. If the last endpoint is equal to the first endpdine polygonal curve is said to fodosed The line
segments are calleztiges The endpoints of the edges are calledvhgicesof the polygonal curve. Each edge
is incidentto two vertices (its endpoints), and each vertex is incifentp) two edges. A polygonal curve is said
to besimpleif no two nonincident elements intersect each other. A dasmple polygonal curve decomposes
the plane into two parts, iisterior andexterior. Such a polygonal curve is calledsanple polygonWhen we
say “polygon” we mean simple polygon.

A polygonal chainC' is monotonewith respect tc if each line that is orthogonal tbintersectsC in a single
connected component. (It may intersect, not at all, at desjpgjnt, or along a single line segment.) A polygonal
chainC is said to bestrictly monotonevith respect to a given ling if any line that is orthogonal tintersects

C in at most one point. A simple polygoR is said to bemonotonewith respect to a lind if its boundary,
(sometimes denoted b#) or 9P), can be split into two chains, each of which is monotone wapect to/
(see Fig. 25(a)).

Z-monotone polygon Splitting diagonals Monotone decomp081t10n
(a) (b) (c)

Fig. 25: Monotonicity.

Henceforth, let us consider monotonicity with respect ®aitkaxis. We will call these polygonkorizontally
monotonelt is easy to test whether a polygon is horizontally monetddow?

(a) Find the leftmost and rightmost vertices (min and ragcoordinate) inO(n) time.

(b) These vertices split the polygon’s boundary into twoichaanupper chainand alower chain Walk from
left to right along each chain, verifying that thecoordinates are nondecreasing. This takés) time.

(As an exercise, consider the problem of determining whiethpolygon is monotone ianydirection. This can
be done inD(n) time.)

Triangulation of Monotone Polygons: We begin by showing how to triangulate a monotone polygon Bymgple
variation of the plane-sweep method. We will return to thesjion of how to decompose a polygon into
monotone components later.

We begin with the assumption that the vertices of the polylgave been sorted in increasing order of their
xz-coordinates. (For simplicity we assume no duplicateoordinates. Otherwise, break ties between the upper
and lower chains arbitrarily, and within a chain break tiedtsat the chain order is preserved.) Observe that
this does not require sorting. We can simply extract the uppé lower chain, and merge them (as done in
MergeSort) inO(n) time.

The idea behind the triangulation algorithm is quite simfley to triangulate everything you can to the left of
the current vertex by adding diagonals, and then removeitirggulated region from further consideration.

Consider the example shown in Fig. 26. There is obviouslfingtto do until we have at least 3 vertices. With
vertex 3, it is possible to add the diagonal to vertex 2, andisalo this. In adding vertex 4, we can add the

Lecture Notes 29 CMSC 754



Fig. 26: Triangulating a monotone polygon.

diagonal to vertex 2. However, vertices 5 and 6 are not \asiblany other nonadjacent vertices so no new
diagonals can be added. When we get to vertex 7, it can be dmatect, 5, and 6. The process continues until
reaching the final vertex.

The important thing that makes the algorithm efficient is fdet that when we arrive at a vertex thatrian-
gulated regionthat lies to the left of this vertex always has a very simptacitire. This structure allows us
to determine irconstant timewvhether it is possible to add another diagonal. And in gdveeacan add each
additional diagonal in constant time. Since any triangafatonsists of. — 3 diagonals, the process runs in
O(n) total time. This structure is described in the lemma below.

Lemma: (Main Invarianf) Fori > 2, let v; be the vertex just processed by the triangulation algoritfiime
untriangulated region lying to the left of consists of twaz-monotone chains, a lower chain and an upper
chain each containing at least one edge. If the chain frpta v has two or more edges, then these edges
form a reflex chain (that is, a sequence of vertices with intemgles all at least 180 degrees). The other
chain consists of a single edge whose left endpointaad whose right endpoint lies to the rightgf(see
Fig. 27(a)).

We will prove the invariant by induction. As the basis casmdider the case of,. Hereu = vy, and one chain
consists of the single edggv; and the other chain consists of the other edge adjacant tdo complete the
proof, we will give a case analysis of how to handle the negngvinvolvingv;, assuming that the invariant
holds atv; 1, and see that the invariant is satisfied after each eventdasgrocessed. There are the following
cases that the algorithm needs to deal with.

Case 1: v; lies on the opposite chain from_;: In this case we add diagonals joiningto all the vertices on
the reflex chain, fromy; _; back to (but not including) (see Fig. 27(b)). Note that all of these vertices are
visible fromw;. Certainlyu is visible tov;. Because the chain is reflex;monotone, and lies to the left
of v; it follows that the chain itself cannot block the visibilifsom v; to some other vertex on the chain.
Finally, the fact that the polygon ismonotone implies that the unprocessed portion of the pwlytying
to the right ofv;) cannot “sneak back” and block visibility to the chain.

After doing this, we sett = v;_;. The invariant holds, and the reflex chain is trivial, cotisg of the
single edge;v;_1.

Case 2: v is on the same chain as_;. There are two subcases to be considered:

Case 2(a): The vertexv;_; is a nonreflex vertex (that is, its interior angle is less th&86 degrees): We
walk back along the reflex chain adding diagonals joinipgo prior vertices until we find the last

vertexv; of the chain that is visible to;. As can be seen in Fig. 27(c), this will involve connecting
to one or more vertices of the chain. Remove these vertioas #f_; back to, but not including;

Lecture Notes 30 CMSC 754



Initial invariant Case 1 v;

Vi—1

() (b)

Fig. 27: Triangulation cases.

from the reflex chain. Ada; to the end of reflex chain. (You might observe a similarityiesn this
step and the inner loop of Graham’s scan.)

Case 2(b): The vertexv;_; is a reflex vertex. In this case cannot see any other vertices of the chain. In
this case, we simply add to the end of the existing reflex chain (see Fig. 27(d)).

In either case, when we are done the remaining chain from is a reflex chain.

How is this implemented? The vertices on the reflex chain @asttred in a stack. We keep a flag indicating
whether the stack is on the upper chain or lower chain, anghasshat with each new vertex we know which
chain of the polygon it is on. Note that decisions about ¥isjbcan be based simply on orientation tests
involving v; and the top two entries on the stack. When we conngloy a diagonal, we just pop the stack.

Analysis: We claim that this algorithm runs i@(n) time. As we mentioned earlier, the sorted list of vertices loa
constructed irO(n) time through merging. The reflex chain is stored on a staclO(Ih) time per diagonal,
we can perform an orientation test to determine whether thotlael diagonal and the diagonal can be added in
constant time. Since the number of diagonals is 3, the total time i (n).

Monotone Subdivision: In order to run the above triangulation algorithm, we firseché¢o subdivide an arbitrary
simple polygonP into monotone polygons. This is also done by a plane-swepmaph. We will add a set of
nonintersecting diagonals that partition the polygon mtmotone pieces (recall Fig. 25).

Observe that the absencemaimonotonicity occurs only at vertices in which the interéorgle is greater than
180 degrees and both edges lie either to the left of the vertéwth to the right. We call such a vertexsean
reflex vertexFollowing our book’s notation, we call the first typererge vertexsince as the sweep passes over
this vertex the edges seem to be merging) and the latter tgpkt aertex

Our approach will be to apply a left-to-right plane sweepe(6éy. 28(a)), which will add diagonals to all the
split and merge vertices. We add a diagonal to each spliexe$ soon as we reach it. We add a diagonal to
each merge vertex when we encounter the next visible vestis tight.

The key is storing enough information in the sweep-lineustéb allow us to determine where this diagonal will
go. When a split vertex is encountered in the sweep, there will be an edgef the polygon lying above and
an edges;, lying below. We might consider attaching the split verteketd endpoint of one of these two edges,
but it might be that neither endpoint is visible to the spéittex. Instead, we need to maintain a vertex that is
visible to any split vertex that may arise betwegrande,. To do this, imagine a sweeping a vertical segment
betweere,, ande, to the left until it hits a vertex. Called this helger) (see Fig. 28(b)).

helper(e,,) : Lete, be the edge of the polygon lying just belewon the sweep line. The helper is the rightmost
vertically visible vertex belowe, on the polygonal chain betweep ande,,.

Observe thahelper(e, ) is defined with respect to the current location of the sweeg. liAs the sweep line
moves, its value changes. The helper is defined only for tbdges intersected by the sweep line. Our approach
will be to join each split vertex thielper(e, ), wheree,, is the edge ofP immediately above the split vertex.

Lecture Notes 31 CMSC 754



s
‘

helper(eq) ,

_-helper(eq)

T €3

i helper(es)
LR
—e5
MR I €6
“helper(es)

(a) (b) (c)

Fig. 28: Split vertices, merge vertices, and helpers.

sweep line sweep line

(Note that it is possible that the helper is the left endpofrit,.) When we hit a merge vertex, we cannot add a
diagonal right away. Instead, our approach is to take notmgftime a helper is a merge vertex. The diagonal
will be added when the very next visible vertex is processed.

Events: The endpoints of the edges of the polygon. These are sortedchgasing order of-coordinates.
Since no new events are generated, the events may be st@athiple sorted list (i.e., no priority queue
is needed).

Sweep status: The sweep line status consists of the list of edges thatsetethe sweep line, sorted from top
to bottom. (Our book notes that we actually only need to stdigees such that the interior of the polygon
lies just below this edge, since these are the only edgesvthavaluatéelper() from.)

These edges are stored in a dictionary (e.g., a balanceq/ttiea), so that the operations of insert, delete,
find, predecessor and successor can be evaluatefdg n) time each.

Event processing: There are six event types based on a case analysis of thestogelure of edges around
each vertex. Let be the current vertex encountered by the sweep (see Fig.R&®all that, whenever
we see a split vertex, we add a diagonal to the helper of the idigediately above it. We defer adding
diagonals to merge vertices until the next opportunityesigo help with this, we define a common action
called “Fix-up.” It is given a vertex and an edge (either above» or incident to its left). Fix-up adds a
diagonal to help€e), if helper(e) is a merge vertex.

Fix-up(v,e): If helper(e) is a merge vertex, add a diagonal frento this merge vertex.

Split vertex(v): Search the sweep line status to find the edigeng immediately above. Add a diagonal
connectingy to helper(e). Add the two edges incident tointo the sweep line status. Letbe the
lower of these two edges. Makethe helper of botle ande’.

Merge vertex(v): Find the two edges incident to this vertex in the sweep liatust(they must be adja-
cent). Lete’ be the lower of the two. Delete them both. ledtie the edge lying immediately above
Fix-up(v, e) and Fix-ugv, ¢’).

Start vertex(v): (Both edges lie to the right af, but the interior angle is less than 180 degrees.) Insert
this vertex’s edges into the sweep line status. Set the hefitke upper edge to.

End vertex(v): (Both edges lie to the left of, but the interior angle is less than 180 degrees.)elled
the upper of the two edges. Fix{upe). Delete both edges from the sweep line status.

Upper-chain vertex(v): (One edge is to the left, and one to the right, and the polygtarior is below.)
Let e be the edge just to the left of Fix-up(v,e). Replace the edge tds left with the edge to its
right in the sweep line status. Makethe helper of the new edge.

Lower-chain vertex(v): (One edge is to the left, and one to the right, and the polygtarior is above.)
Let e be the edge immediately aboveFix-up(v, ¢). Replace the edge tgs left with the edge to its
right in the sweep line status. Makehe helper of the new edge.

Lecture Notes 32 CMSC 754



helper(e) A oo FIXAUP (0, €) i,

— e Qv e
’U H

e\e
0/

Split Merge Start End Upper Lower

Fig. 29: Plane sweep cases, whelis the vertex being swept. The laketienotes the edge such thetiper(e) < v.

There are many special cases (what a pain!), but each oniglysefasy to deal with, so the algorithm is quite
efficient. As with previous plane sweep algorithms, it is natd to show that the running timeG¥log n) times
the number of events. In this case there is one event pexystdehe total time i€ (n logn). This gives us an
O(nlog n) algorithm for polygon triangulation.

Lecture 7: Linear Programming

Linear Programming: One of the most important computational problems in sciemzkengineering is linear pro-
gramming, or LP for short. LP is a special casemuflti-dimensional constrained optimization problenis
constrained optimization, the objective is to find a pointdidimensional space that minimizes (or maximizes)
some function, subject to various constraints on the sellmfable solutions. Linear programming is perhaps
the simplest example of such a problem, since the congdraird the objective function are all linear. In spite of
this apparent limitation, linear programming is a very pdweway of modeling optimization problems. Typi-
cally, linear programming is performed in spaces of venhrdgnension (hundreds to thousands or more), but
because the focus of this course is on algorithms for lowedisional geometric problems, we will assume that
the dimensioni is a constant, independent of the number of constraints.

Formally, inlinear programmingve are given a set of linear inequalities, calbethstraintsin reald-dimensional
spaceR?. Given a poin{x,, ..., z4) € RY we can express such a constraintas, +. .. +aqxq < b, by spec-
ifying the coefficientz; andb. (Note that there is no loss of generality in assuming thairiequality relation is

<, since we can convert:a relation to this form by simply negating the coefficients athosides.) Geometri-
cally, each constraint defines a closed halfspad®’inThe intersection of these halfspaces intersection defines
a (possibly empty or possibly unbounded) polyhedroRincalled thefeasible polytope(see Fig. 30(a)).

feasible infeasible unbounded

Lo le

be

feasible
polytope

N -
5 7
]
X~ optimal /Y 7\
vertex
(a) (b) ()

Fig. 30: 2-dimensional linear programming.

. optimum

.

We are also given a linearbjective functionwhich is to be minimized or maximized subject to the given
constraints. We can express such as functionas+ . . . cqzq4, by specifying the coefficients. (Again, there

5To some geometric purists this an abuse of terminology, sinasydope is often defined to be a closed, bounded convex pdtghe and
feasible polyhedra need not be bounded.

Lecture Notes 33 CMSC 754



is no essential difference between minimization and mazation, since we can simply negate the coefficients
to simulate the other.) We will assume that the objectiveimtiximize the objective function. If we think
of (c1,...,cq) as a vector iR?, the value of the objective function is just the projecteagly of the vector
(z1,...,24) onto the direction defined by the vectosee Fig. 30(a)). It is not hard to see that (assuming
general position), if a solution exists, it will be achieuggda vertex of the feasible polytope, called tiy@imal
vertex

In general, al-dimensional linear programming problem can be expressed a

Maximize: cjzy + caxo + - - + cqqg
Subject to: a1,1T1 + -+ a1,42q < by
as1%1 + -+ + ag,qrq < bo

Gn, 121 + -+ Gn,dTd < bna
whereq; ;, ¢;, andb; are given real numbers. This can be also be expressed irkmatstion:

Maximize: c¢'z,
Subjectto: Az <b.

wherec andz ared-vectorsp is ann-vector andA is ann x d matrix. Note that should be a nonzero vector,
andn should be at least as large&and may generally be much larger.

There are three possible outcomes of a given LP problem:

Feasible: The optimal point exists (and assuming general position)usique vertex of the feasible polytope
(see Fig. 30(a)).

Infeasible: The feasible polytope is empty, and there is no solution Eége30(b)).

Unbounded: The feasible polytope is unbounded in the direction of thgailve function, and so no finite
optimal solution exists (see Fig. 30(c)).

In our figures (in case we don't provide arrows), we will assuitme feasible polytope is the intersection of
upper halfspaces. Also, we will usually take the objectigetarc to be a vertical vector pointing down. (It can
point in any direction, but, if we wished, we could rotatespto make it point any direction we want.) In this
setting, the problem is just that of finding the lowest vefminimumy-coordinate) of the feasible polytope.

Linear Programming in High Dimensional Spaces: As mentioned earlier, typical instances of linear prograngmn
may involve hundreds to thousands of constraints in veri kignensional space. It can be proved that the
combinatorial complexity (total number of faces of all dims@ns) of a polytope defined byhalfspaces can
be as high a§)(nl%/2]). In particular, the number of vertices alone might be thghhiTherefore, building a
representation of the entire feasible polytope is not aniefft approach (except perhaps in the plane).

The principal methods used for solving high-dimensionadir programming problems are thienplex algo-
rithm and variousinterior-point methods The simplex algorithm works by finding a vertex on the felesib
polytope, then walking edge by edge downwards until reachinocal minimum. (By convexity, any local
minimum is the global minimum.) It has been long known thatéhare instances where the simplex algorithm
runs in exponential time, but in practice it is quite effidien

The question of whether linear programming is even sohialpelynomial time was unknown until Khachiyan'’s
ellipsoid algorithm (late 70’s) and Karmarkar’'s more pieait interior-point algorithm (mid 80’s). Both algo-
rithms are polynomial in the total number of bits needed &xdbe the input. This is calledveeakly polynomial
timealgorithm. Itis not known whether there is a strongly polymal time algorithm, that is, one whose running
time is polynomial in bott andd, irrespective of the number of bits used for the input coieffits.

Lecture Notes 34 CMSC 754



Solving LP in Spaces of Constant DimensionThere are a number of interesting optimization problemsdaa be
posed as a low-dimensional linear programming problems Teans that the number of variables (ths) is
constant, but the number of constraintsay be arbitrarily large.

The algorithms that we will discuss for linear programmimg based on a simple method caliedremental
construction Incremental construction is among the most common desigmiques in computational geome-
try, and this is another important reason for studying thedr programming problem.

Deterministic Incremental Algorithm: Recall our geometric formulation of the LP problem. We aregin halfs-
paces{hi,...,hq} in R and an objective vecter, and we wish to compute the vertex of the feasible polytope
that is most extreme in directian Our incremental approach will be based on starting witméral solution to
the LP problem for a small set of constraints, and then weswiticessively add one new constraint and update
the solution.

In order to get the process started, we need to assume (IththaP is bounded and (2) we can find a set of
d halfspaces that provide us with an initial feasible poinettg to this starting point is actually not triviél.
For the sake of focusing on the main elements of the algorithewill skip this part and just assume that the
first d halfspaces define a bounded feasible polytope (actuallylliber a polyhedral cone). The the unique
point where alld bounding hyperplaneg,, ..., hq, intersect will be our initial feasible solution. We denote
this vertex ag, (see Fig. 31).

Fig. 31: Starting point of the incremental constructiofRih

We will then add halfspaces one by ong, 1, hqy2, . - ., and with each addition we update the current optimum
vertex, if necessary. Let; denote the optimal feasible vertex after the additiof/of, ks, . . ., h;}. Notice that
with each new constraint, the feasible polytope generabfomes smaller, and hence the value of the objective
function at optimum vertex can only decrease. (In terms ofikustrations, they-coordinate of the feasible
vertex increases.)

There are two cases that can arise whers added. In the first case;_; lies within the halfspacé;, and so

it already satisfies this constraint (see Fig. 32(a)). Ifteen it is easy to see that the optimum vertex does not
change, that i®; = v;_;. In the second case_; violates constraink;. In this case we need to find a new
optimum vertex (see Fig. 32(b)). Let us consider this caggeater detail.

Updating the Optimum Vertex: The important observation is that (assuming that the féapitytope is not empty)
the new optimum vertex must lie on tlié — 1)-dimensional hyperplane that bountls Our book presents a
formal proof of this fact. In general, the problem can be reduced to an LP problem inamerldimension.
First, project the objective vectaronto/;, lettingc’ be the resulting vector (see Fig. 32(c)). Next, intersechea
of the halfspace$h,,...,h;_1} with ¢;. Each intersection is @ — 1)-dimensional halfspace that lies én
We then recursively solve th@ — 1)-dimensional LP involving these— 1 halfspaces with respect t6. The
resulting optimum vertex; is the desired solution.

80ur text book explains how to overcome these assumptio6X(ir) additional time.

"Here is an intuitive argument. L&t denote the bounding hyperplane. Suppose that the new optivedex does not lie od;. Draw a
line segment fromy; _; to the new optimum. Observe (1) that, by linearity, as you widk@ this segment the value of the objective function
decreases monotonically, and (2) that this segment must €r@isscause it goes from being infeasible with respeét;tto being feasible). Thus,
the objective function is maximized at the crossing point,clities on¢;.

Lecture Notes 35 CMSC 754



Fig. 32: Incremental construction.

Suppose for the sake of illustration that= 2. In this casée; is a line (see Fig. 32(c)). The projected objective
vectorc’ is a vector pointing one way or the other 6n The intersection of each halfspace withis a ray,
which can be thought of as an interval on the line that is bednah one side and unbounded on the other.
Computing the intersection of a collection of intervals dima, is very easy and can be done in linear time, that
is, O(i — 1) time in this case. (This interval is the heavy solid line ig.B2(c).) We return whichever vertex of
this interval is extreme in the direction dfas the desired vertex. If the interval is empty, then it follows that
the feasible polytope is also empty, and we may terminataldeithm immediately and report that there is no
solution. Because, by assumption, the original LP is bodnidéollows that the(d — 1)-dimensional LP is also
bounded.

Worst-Case Analysis: What is the running time of this algorithm? Ignoring the iliti halfspaces, there are— d
halfspace insertions performed. In stgpve may find that the current optimum vertex is feasible. Takes
O(d) time. The alternative is that we need to solv&la- 1)-dimensional LP withi — 1 constraints. It takes
O(d(i—1)) to intersect each of the constraints witrandO(d) time to project onto/;. If we letTy(n) denote
the time to run this algorithm in dimensiehwith »n constraints. In this case the time@di + Ty, (i — 1)).
Since there are two alternatives, the running time is theimax of the two. Ignoring constant factors, the
running time can be expressed by the following recurrenoadia:

n

Ta(n) = > <max(d7di+Td1(i—1))).

i=d+1

Sinced is a constant, we can simplify this to:

n

Ty(n) = > (i+Tua(i—1)).

i=d+1

The basis case of the recurrence occurs whenl, and we just solve the interval intersection problem descti
above inO(n) time by brute force. Thus, we hag(n) = n.

Unfortunately, this recurrence solvesTg(n) = O(n<), which is not very efficient. We can see this by induc-
tion. In particular, let’s try to prove that, for some comdta, we haveT;(n) < an?. We'll skip the basis case
(which is easy). In general, fak > 2, we have

Ta(n) = D (i+Taa(i=1)) < > (i+ai-1)"") < Y an®! < an’.
i=d+1 i=d+1 i=1

(Although this analysis is quite crude, it can be shown todyergtotically tight.)

Lecture Notes 36 CMSC 754



Notice that this worst-case analysis is based on the radssimistic assumption that the current verteadvgays
infeasible Although there may exist insertion orders for which thigihtihappen, we might wonder whether
we can arrange the insertion order so this worst case doexaot. We'll consider this alternative next.

Randomized Algorithm: Suppose that we apply the above algorithm, but we insertdlfsgaces imandom order
(except for the first/, which need to be chosen to provide an initial feasible wert&his is an example of a
general class of algorithms callemhdomized incremental algorithmEhere is only one difference between this
algorithm and the deterministic one, namely, just priotoring the incremental algorithm, we call a procedure
that randomly permutes the initial input list (excluding ffirstd halfspaces). A description is given in the code
block below.

Randomized IncrementdlDimensional Linear Programming
Input: Let H be a set of: (d — 1)-dimensional halfspaces, such that the fitslefine an initial feasible vertex;, and letc be the
objective function vector.

(1) Letwy be the intersection point of the hyperplanes bounding . ., hq, which we assume define an initial feasible vertex.
Randomly permute the remaining halfspaces, anhlet, . . ., h,.) denote the resulting sequence.

(2) Fori =d+ 1tondo:
(a) If (’Uifl € hL) thenv; + v;_1.

(b) Otherwise, intersecthi, ha,...,h;—1} with the (d — 1)-dimensional hyperplané; that boundsh;. Letc’ be the
projection ofc onto/;. Solve the resultingd — 1)-dimensional LP recursively. (When the dimension falls to 1, we can
just solve the problem brute force by intersecting up fatervals.)

(i) Ifthe (d — 1)-dimensional LP is infeasible, terminate and report that the LP is infeasible
(i) Otherwise, letv; be the solution to théd — 1)-dimensional LP.

(3) Returnv,, as the final solution.

What is the expected case running time of this randomize@imental algorithm? Note that the expectation is
over the random permutation of the insertion order. We nmakassumptionabout the distribution of the input.

(Thus, the analysis is in the worst-case with respect tortpetj but in the expected case with respect to random
choices.)

The number of random permutations(is — d)!, but it will simplify things to pretend that we permute aleth
halfspaces, and so there arepermutations. Each permutation has an equal probability/ of of occurring,
and an associated running time. However, presenting tHgsasmias sum ofi! terms does not lead to something
that we can easily simplify. We will apply a technique calbstkwards analysjsvhich is quite useful.

Warm-Up Exercise for Backwards Analysis: To motivate how backwards analysis works, let us consideuahm
simpler example, namely the problem of computing the mimmaf a set ofn distinct numbers. We permute
the numbers and inspect them one-by-one. We maintain ablartiaat holds the minimum value seen so far.
If we see a value that is smaller than the current minimunm the update the minimum. The question we
will consider is, on average how many times is the minimunuealpdated? Below are three sequences that
illustrate that the minimum may updated once (if the numlbeesgiven in increasing orden),times (if given
in decreasing order). Observe that in the third sequenciehvignrandom, the minimum does not change very

often at all.
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14
14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
5 9 4 11 2 6 & 14 0 3 13 12 1 7 10

Let p; denote the probability that the minimum value changes opeating theith number of the random
permutation. Thus, with probability; the minimum changes (and we add 1 to the counter for the nuofber
changes) and with probability — p; it does not (and we add 0 to the counter for the number of crgndée

Lecture Notes 37 CMSC 754



total expected number of changes is

n

C(n) = Z(Pz 1+ —=pi)-0) = szu
i=1

=1

It suffices to compute,;. We might be tempted to reason as follows. Let us considangora subset of the first

1 — 1 values, and then consider all the possible choices foitthealue. However, this leads to a complicated
analysis involving conditional probabilities. Let us ieatl consider an alternative approach, in which we work
backwards. In particular, let us consider a random sétvaflues, and consider the probability tlaest value
added to this set resulted in a change in the minimum

To make this more formal, le¥; be an arbitrary subset éfnumbers from our initial set af. (In theory, the
probability is conditional on the fact that the element$pfepresent the firstelements to be chosen, but since
the analysis will not depend on the particular choic&gfit follows that the probability that we compute will
hold unconditionally.) Among alll permutations of the elements.gf, in how many of these does the minimum
change in the transition from tHe — 1)-st stage to théth stage? The key observation is that the minimum only
changes for those sequences in which the minimum elemerntheéast {th) element of the sequence. Since the
minimum item appears with equal probability in each of thmositions of a random sequence, the probability
that it appears last is exactly'i. Thus,p; = 1/i. From this we have

n

C(n) = Zn:pi = Z% = Inn+O(1).

i=1

This summatiord _,(1/1) is called theHarmonic seriesaind the fact that it is nearly equallion is a well known
fact. (See any text on probability theory.)

This is called abackwards analysibecause the analysis works by considering the possibl@namcnsitions
that brought us t&; from S;_1, as opposed to working forward fro}_; to S;. Of course, the probabilities
are no different whether we consider the random sequenésvbads rather than forwards, so this is a perfectly
accurate analysis. It's arguably simpler and easier to nstated.

Backwards Analysis for Randomized LP: Let us apply this same approach to the analysis of the rurtivimg of
the randomized incremental linear programming algorittWe.will do the analysis ia-dimensional space. Let
T.(n) denote the expected running time of the algorithm on a setafifspaces in dimensiah We will prove
by induction thafy(n) < ~d! n, wherey is some constant that does not depend on dimension. It wierttee
proof simpler if we start by proving th&%;(n) < v4d! n, wherey,; does depend on dimension, and later we will
eliminate this dependence.

Ford + 1 < i < n, let p; denote the probability that the insertion of thk hyperplane in the random order
results in a change in the optimum vertex.

Case 1: With probability (1 — p;) there is no change. It takes (%d) time to determine that this is the case.

Case 2: With probability p;, there is a change to the optimum. First we project the oleector ontol;
(which takesO(d) time), next we intersect the existirig- 1 halfspaces withf; (which takesO(d(i — 1))
time). Together, these last two steps tékegli) time. Finally we invoke gd — 1)-dimensional LP on a
set ofi — 1 halfspaces in dimensiah— 1. By the induction hypothesis, the running time of this raowe
callisTy—1(i —1).

Combining the two cases, up to constant factors (which digpiend on dimension), we have a total expected
running time of

n

Tan) < Y ((1—pi>d+pz-(di+Td1<z‘))> < Y (d+pi(di+ Taa(i))).

i=d+1 i=d+1

Lecture Notes 38 CMSC 754



It remains is to determine what is. To do this, we will apply the same backward-analysis héqple as above.
Let S; denote an arbitrary subset consisting: aff the original halfspaces. Again, it will simplify things t
assume that all thehyperplanes are being permuted (not just thedastl). Among all:! permutations of5;,

in how many does the optimum vertex change withdestep? Let; denote the optimum vertex for these
halfspaces. It is important to note thatonly depends on the s8t and not on the order of their insertion. (You
might think about why this is important.)

Assuming general position, there afbalfspaces whose intersection definggFor example, in Fig. 33(a), we
label these halfspaces Agandh;.)

¢ If none of thesel halfspaces were the last to be inserted, thea v;,_1, and there is no change. (As is
the case in Fig. 33(b), wherg is the last to be inserted.)

e On the other hand, if any of them were the last to be insertezh 4; did not exist yet, and hence the
optimum must have changed as a result of this insertion. A3 case in Fig. 33(c), whetg is the last
to be inserted.)

hs . D3

()

Fig. 33: Backwards analysis for the randomized LP algorithm

Thus, the optimum changes if and only if either one ofdltefining halfspaces was the last halfspace inserted.
Since all of thel halfspaces are equally likely to be last, this happens withability d/:. Thereforep; = d/i.

This probabilistic analysis has been conditioned on tharaption thatS; was the subset of halfspace seen so
far, but since the final probability does not depend on anpnies ofS; (just ond andi), the probabilistic
analysis applies unconditionally to all subsets of size

Returning to our analysis, singe = d/i, and applying the induction hypothesis tiat 1 (i) = v4—1(d — 1)!4,

we have
n n d
Tan) < > (d+pi(di+Tia(i) < > <d+,(di+’yd_1(d—1)!i))
i=d+1 i=d+1 v
< Y (d+d®+ygad) < (d+d*+yaid)n.

i=d+1

To complete the proof, we just need to selegtso that the right hand side is at megti!. To achieve this, it

suffices to set
d + d?
Yd = al + Yd-1-

Plugging this value into the above formula yields

d+ d?
d!

Ty(n) < (d+d* 4+ v4_1d)n < < +’Yd_1) d'n < ~qd!n,

Lecture Notes 39 CMSC 754



as desired.

As mentioned above, we don't like the fact that the “constantchanges with the dimension. To remedy this,
note that becausé grows so rapidly compared to eithéror d, it is easy to show thatd + d2)/d! < 1/2¢

for almost all sufficiently large values df Because the geometric serjes,-, 1/2¢, converges, it follows that
there is a constant(independent of dimension) such that< ~ for all d. Thus, we have th&f;(n) < O(d!n),
where the constant factor hidden in the big-Oh does not akpemimension.

In summary, we have presented a simple and elegant randdimiaemental algorithm for solving linear pro-
gramming problems. The algorithm runsdh(n) time in expectation. (Remember that expectation dugs
depend on the input, only on the random choices.) Unforipabur assumption that the dimensidns a
constant is crucial. The factal grows so rapidly (and it seems to be an unavoidable part cdnlagysis) that
this algorithm is limited to fairly low dimensional spaces.

You might be disturbed by the fact that the algorithm is ndedwinistic, and that we have only bounded the
expected case running time. Might it not be the case thatltwithm takes ridiculously long, degenerating
to theO(n?) running time, on very rare occasions? The answer is, of epyes. In his original paper, Seidel
proves that the probability that the algorithm exceedslitsing time by a factob is O((1/c)*®), for any
fixed constant. For example, he shows that in 2-dimensional space, theapiit that the algorithm takes
more than 10 times longer than its expected time is at fe800000000065. You would have a much higher
probability be being struck by lightnintvicein your lifetime!

Lecture 8: Halfplane Intersection and Point-Line Duality

Halfplane Intersection: Today we begin studying another very fundamental topic ongetric computing, and along
the way we will show a rather surprising connection betwééntbpic and the topic of convex hulls. Any line
in the plane splits the plane into two regions, one lying dhegiside of the line. Each such region is called a
halfplane (In d-dimensional space the corresponding notionhaléspacewhich consists of the space lying to
one side of §d — 1)-dimensional hyperplane.) We say that a halfplane is etttemedor opendepending on
whether or not it contains the line itself. For this lecture will be dealing entirely with closed halfplanes.

How do we represent lines and halfplanes? For our purpose($y general position, we may assume we are
dealing only with nonvertical lines), it will suffice to regsent lines in the plane using the following equation:

y=ax —b,

wherea denotes the slope ariddenotes the negation of theintercept. (We will see later why it is convenient
to negate the intercept value.) Note that this is not fullyagal, since it cannot handle vertical lines (which have
infinite slope). Each nonvertical line defines two clokatfplanes consisting of the points on or below the line
and the points on or above the line:

lower (closed) halfplane; < ax — b upper (closed) halfplang: > ax — b.

Halfplane intersection problem: The halfplane intersection problerns, given a set of: closed halfplanesd =
{h1, ha, ..., hy,} compute their intersection. A halfplane (closed or oper) é®nvex set, and hence the inter-
section of any number of halfplanes is also a convex set.. @dllustrates the intersection of a collection of
upper halfspaces.) Unlike the convex hull problem, therg®etion ofn halfplanes may generally be empty or
even unbounded. A natural output representation might bsttihe lines bounding the intersection in counter-
clockwise order.

How many sides can bound the intersectiomdfalfplanes in the worst case? Observe that by convexitjy eac
of the halfplanes can appear only once as a side, and hencaiieum number of sides is How fast can we
compute the intersection of halfplanes? As with the conudkgroblem, it can be shown, through a suitable
reduction from sorting, that the problem has a lower bound(@flog ).

Lecture Notes 40 CMSC 754



Yy > a;x —b;

Fig. 34: Halfplane intersection.

Who cares about this problem? Halfplane intersection arfdeate intersection in higher dimensions are also
used in generating convex shape approximations. For exanmptobotics and computer graphics, rather than
computing collisions with a complex shape, it is easier tst fiheck for collisions with a enclosing convex
approximation to the shape. Also, many optimization protdean be expressed as minimization problems
over a convex domain, and these domains are represented tahsection of halfspaces.

Solving the halfspace intersection problem in higher disiams is quite a bit more challenging than in the plane.
In general, the worst-case total combinatorial complekigyintersection of, halfspaces ifR? can be as high as
O(nl4/21), For example, the boundary of the intersection of halfspatdimension is a(d — 1)-dimensional
cell complex, and would require an appropriate data stradtr storing such objects.

We will discuss two algorithms for the halfplane interseotproblem. The first is given in the text, and involves
an interesting combination of two techniques we have dissifor geometric problems, geometric divide-and-
conquer and plane sweep. For the other, we will consider ahigiesimpler problem of computing something

called thdower envelop@®f a set of lines, and show that it is closely related to theverihull problem.

Divide-and-Conquer Algorithm: We begin by sketching a divide-and-conquer algorithm fanpating the inter-
section of halfplanes. The basic approach is very simple:

(1) If n =1, then just return this halfplane as the answer.
(2) Split then halfplanes ofH into subsetdi; and H» of sizes|n /2] and[n/2], respectively.

(3) Compute the intersection éf; and H,, each by calling this procedure recursively. &t and K5 be the
results.

(4) Intersect the convex polygors; and K, (which might be unbounded) into a single convex polydon
and returnk.

The running time of the resulting algorithm is most easilga@ed using aecurrence that is, a recursively
defined equation. If we ignore constant factors, and assansgmplicity thatn is a power of 2, then the running
time can be described as:

1 ifn=1,
Tn) = :{ 9T (n/2) + M (n) it n > 1,

where M (n) is the time required to merge the two results, that is, to agmghe intersection of two convex
polygons whose total complexity is We will show below that\/(n) = O(n), and so it follows by standard
results in recurrences that the overall running tifi{@) is O(nlog n). (See any standard algorithms textbook.)

Intersecting Two Convex Polygons: The only nontrivial part of the process is implementing ajoathm that inter-
sects two convex polygonds; and K, into a single convex polygon. Note that these are somevwdetial
convex polygons because they may be empty or unbounded.

We know that it is possible to compute the intersection o Begments i®((n + I)logn) time, wherel is
the number of intersecting pairs. Two convex polygons cammersect in more thah = O(n) pairs. (As an
exercise, try to prove this.) This would givéhn logn) algorithm for computing the intersection. This is too
slow, however, and would result in an overall time@fn log® n) for T'(n).

Lecture Notes 41 CMSC 754



There are two common approaches for intersecting convesgpos. Both essentially involve merging the two
boundaries. One works by a plane-sweep approach. The atlwvés a simultaneous counterclockwise sweep
around the two boundaries. The latter algorithm is desdribh®’'Rourke’s book. We'll discuss the plane-sweep
algorithm.

Fig. 35: Intersecting two convex polygons by plane sweep.

We perform a left-to-right plane sweep to compute the ietetion (see Fig. 35). We begin by breaking the
boundaries of the convex polygons into their upper and lahains. (This can be done @i(n) time.) By
convexity, the sweep line intersects the boundary of eankiexopolygonk; in at most two points, and hence,
there are at most four points in the sweep line status at are. flT hus, we do not need a ordered dictionary for
storing the sweep line status—a simple 4-element list ssffiédso, our event queue need only be of constant
size. At any point there are at most 8 possible candidatethéonext event, namely, the right endpoints of the
four edges stabbed by the sweep line and the (up to fourmtéon points of these upper and lower edges of
K with the upper and lower edges . Since there are only a constant number of possible evardsach
can be handled i®(1) time, the total running time i©(n).

Lower Envelopes and Duality: Next we consider a slight variant of this problem, to dem@istsome connections
with convex hulls. These connections are very importantntor@gderstanding of computational geometry, and
we see more about them in the future. These connections bal@ with a concept calledoint-line duality
In a nutshell there is a remarkable similarity between howtgdnteract with each other an how lines interact
with each other. Sometimes it is possible to take a problewiving points and map it to an equivalent problem
involving lines, and vice versa. In the process, new insighthe problem may become apparent.

The problem to consider is called tloever envelop@roblem, and itis a special case of the halfplane intersecti
problem. We are given a setoflinesL = {¢1,¢s, ..., ¢, } where/; is of the formy = a;x — b;. Think of these
lines as defining: halfplanesy < a;z — b;, each lyingbelowone of the lines. Théower envelop®f L is the
boundary of the intersection of these half planes (see Big.Theupper envelopés defined symmetrically.

upper envelope

lower envelope

Fig. 36: Lower and upper envelopes.

Lecture Notes 42 CMSC 754



The lower envelope problem is a restriction of the halfpliswersection problem, but it an interesting restriction.
Notice that any halfplane intersection problem that dogdmlve any vertical lines can be rephrased as the
intersection of two envelopes, a lower envelope defined byawer halfplanes and an upper envelope defined
by the upward halfplanes.

We will see that solving the lower envelope problem is veryilsir to solving the upper convex hull problem.
In fact, they are so similar that exactly the same algorithithsglve both problems, without changing even a
single character of code! All that changes is the way in wigih interpret the inputs and the outputs.

Lines, Points, and Incidences:In order to motivate duality, let us discuss the represamtaif lines in the plane.
Each line can be represented in a number of ways, but for mbwslassume the representation ax — b, for
some scalar valuesandb. (Why —b rather thant-b? The distinction is unimportant, but it will simplify some
of the notation defined below.) We cannot represent vetiicas in this way, and for now we will just ignore
them.

Therefore, in order to describe a line in the plane, you newylgive its two coefficientga, b). Thus, lines in
the plane can be thought of as points in a new 2-dimensiormaespn which the coordinate axes are labeled
(a,b), rather than(z,y). For example, the liné : y = 2z + 1 corresponds to the poiri2, —1) in this space,
which we denote by*. Conversely, each poipt = (a, b) in this space of “lines” corresponds to a nonvertical
line, y = ax — b in the original plane, which we denote py. We will call the original(x, y)-plane theprimal
plang and the newa, b)-plane thedual plane

This insight would not be of much use unless we could say dangabout how geometric relationships in one
space relate to the other. The connection between the twlvewincidences between points and line. Two lines
determine a point through intersection. Two points deteena line, by taking their affine combination. Later,
we’'ll show that these relationships are preserved by du&dr example, consider the two linés: y = 2z +1

and the linel; : y = —% + 6 (see Fig. 37(a)). These two lines intersect at the peiat (2,5). The duals of
these two lines aré; = (2,—1) and/; = (—3,—6). The line in the(a, b) dual plane passing through these
two points is easily verified to be= 2a — 5. Observe that this is exactly the dual of the pgilfsee Fig. 37(b)).

(As an exercise, prove this for two general lines.)
Primal Dual

bi:y=2z+1

Fig. 37: The primal and dual planes.

Point-Line Duality: Let us explore this dual transform more formally. Duality faore specificallypoint-line dual-
ity) is a transformation that maps points in the plane to linesliawes to point. (More generally, it maps points
in d-space to hyperplanes dimensiégn We denote this transformation using a asterigkas a superscript.
Thus, given poinp and line/ in the primal plane we defing andp* to be a point and line, respectively, in the

Lecture Notes 43 CMSC 754



dual plane defined as follovfs.

Ciy="Llox—ly, = 0* =l 0)
P = (P, Dy) = p*:b=pa—p,.

It is convenient to define the dual transformation so thad its own inverse (that is, it is an involution). In

particular, it maps points in the dual plane to lines in thienpt, and vice versa. For example, given a point

p = (pa,py) In the dual plane, its dual is the line= p,z — p, in the primal plane, and is denoted p¥. It
follows thatp** = p and/** = /4.

Properties of Point-Line Duality: Duality has a number of interesting properties, each of whieasy to verify by
substituting the definition and a little algebra.
Self Inverse: p** = p.

Order reversing: Pointp is above/on/below liné in the primal plane if and only if ling* is below/on/above
point/* in the dual plane, respectively (see Fig. 38).

Intersection preserving: Lines/, and/; intersect at poinp if and only if the dual linep* passes through points
¢5 and/s.

Collinearity/Coincidence: Three points are collinear in the primal plane if and onlh#it dual lines intersect
in a common point.

Order reversing

(1 y=2x+1 |p* is below ¢] and above €§|

Fig. 38: The order-reversing property.

The self inverse property was already established (esdlgnitiy definition). To verify the order reversing
property, consider any poiptand any line/.

pisonorabove < p, > lopy — by <= {y > pyl, —p, < p*isonorbelow’*

(From this is should be apparent why we chose to negatg-thercept when dualizing points to lines.) The
other two properties (intersection preservation andmedrity/coincidence are direct consequences of the order
reversing property.)

Convex Hulls and Envelopes:Let us return now to the question of the relationship betwsaivex hulls and the
lower/upper envelopes of a collection of lines in the plafike following lemma demonstrates the, under the
duality transformation, the convex hull problem is dualtju&alent to the problem of computing lower and
upper envelopes.

8Duallity can be generalized to higher dimensions as welR4nlet us identify they axis with thed-th coordinate vector, so that an arbitrary
point can be written ap = (x1,...,x4—1,y) and a(d — 1)-dimensional hyperplane can be writtenfas y = Z;i;f a;z; — b. The dual of

this hyperplane i&%* = (a1,...,aq_1,—b) and the dual of the poiniis p* : b = Zf;ll z;a; — y. All the properties defined for point-line
relationships generalize naturally to point-hyperplaglationships.

Lecture Notes 44 CMSC 754



upper hull

lower hull

() (b)

Fig. 39: Equivalence of hulls and envelopes.

Lemma: Let P be a set of points in the plane. The counterclockwise ordgregpoints along the upper (lower)
convex hull of P (see Fig. 39(a)), is equal to the left-to-right order of teguence of lines on the lower
(upper) envelope of the dué&l* (see Fig. 39(b)).

Proof: We will prove the result just for the upper hull and lower dope, since the other case is symmetrical.
For simplicity, let us assume that no three points are czdlin
Consider a pair of points; andp; that are consecutive vertices on the upper convex hull. ikeiguivalent
to saying that all the other points &flie beneath the liné;; that passes through both of these points.
Consider the dual lineg; andp;. By the incidence preserving property, the dual pdjntis the inter-
section point of these two lines. (By general position, we/ mssume that the two points have different
z-coordinates, and hence the lines have different slopesefdre, they are not parallel, and the intersec-
tion point exists.)
By the order reversing property, all the dual linestof pass above poir;;. This is equivalent to saying
the/;; lies on the lower envelope @?*.
To see how the order of points along the hulls are represeaited) the lower envelope, observe that
as we move counterclockwise along the upper hull (from righeft), the slopes of the edges increase
monotonically. Since the slope of a line in the primal plamthiea-coordinate of the dual point, it follows
that as we move counterclockwise along the upper hull, wiethis lower envelope from left to right.

One rather cryptic feature of this proof is that, although tipper and lower hulls appear to be connected, the
upper and lower envelopes of a set of lines appears to cafdisbd disconnected sets. To make sense of this,
we should interpret the primal and dual planes from the metsge of projective geometry, and think of the
rightmost line of the lower envelope as “wrapping aroundthte leftmost line of the upper envelope, and vice
versa. The places where the two envelopes wraps aroundporre to the vertical lines (having infinite slope)
passing through the left and right endpoints of the hull. §Asxercise, can you see which is which?)

Lecture 9: Trapezoidal Maps

Trapezoidal Map: Many techniques in computational geometry are based onrgmg some sort of organizing
structure to an otherwise unorganized set of geometriccthjée have seen triangulations as one example,
where the interior of a simple polygon is subdivided intatigles. Today, we will consider a considerably more
general method of defining a subdivision of the plane intgoé#mnegions. It works not only for simple polygons
but for much more general inputs as well.

LetS = {s1,...,s,} be asetof line segments in the plane, such that the segneents thtersect one another,
except where the endpoint of one segment intersect the andgfoanother segment. (Note that any planar

Lecture Notes 45 CMSC 754



straight-line subdivision could be expressed in this fyrbet us assume that no two segment endpoints share
the samee-coordinate (except when two or more segments share a corantdpoint). This implies that there
are no vertical segments.

We wish to produce a subdivision of space that “respectseliae segments. To do so, we start by enclosing all
the segments within a large bounding rectangle (see Fig)¥0(his is mostly a convenience, so we don't have
to worry about unbounded regions. Next, imagine shootimgjlet pathvertically upwards and downwards from
the endpoints of each segment®tintil it first hits another segment &f or the top or bottom of the bounding
rectangle. The combination of the original segments anskthertical bullet paths defines a subdivision of the
bounding rectangle called tltiepezoidal mawf S (see Fig. 40(b)).

Line segments Trapezoidal map

Canan’s T o}
o ' '

(a)
Fig. 40: A set of segments and the associated trapezoidal map

The faces of the resulting subdivision are generally trajoszwith vertical sides, but they may degenerate to
triangles in some cases. The vertical sides are sometiniied valls. Also observe that it is possible that the

nonvertical side of a trapezoid may have multiple vertides@gthe interior of its top or bottom side. (See the

trapezoid labeled\ in Fig. 40.)

We claim that the process of converting an arbitrary polg@ubdivision into a trapezoidal decomposition
increases its size by at most a constant factor. We derivexthet expansion factor in the next claim.

Claim: Given a polygonal subdivision with segments, the resulting trapezoidal map has at st 4
vertices andn + 1 trapezoids.

Proof: To prove the bound on the number of vertices, observe that\estex shoots two bullet paths, each of
which will result in the creation of a new vertex. Thus eacigioal vertex gives rise to three vertices in
the final map. Since each segment has two vertices, thisemptimostn vertices. The remaining four
come from the bounding rectangle.

To bound the number of trapezoids, observe that for eaclkezoag in the final map, its left side (and its
right as well) is bounded by a vertex of the original polygmbdivision. The left endpoint of each line
segment can serve as the left bounding vertex for two tragefone above the line segment and the other
below) and the right endpoint of a line segment can serveeatethbounding vertex for one trapezoid.
Thus each segment of the original subdivision gives riset tmast three trapezoids, for a total 8f
trapezoids. The last trapezoid is the one bounded by thsitkftof the bounding box.

An important fact to observe about each trapezoid is thatdefined(that is, its existence is determined) by
exactly four entities from the original subdivision: a segrhon top, a segment on the bottom, a bounding vertex
on the left, and a bounding vertex on the right. The boundentices may be endpoints of the upper or lower
segments, or they may below to completely different segmeéltiis simple observation will play an important
role later in the analysis.

Construction: We could construct the trapezoidal map easily by plane swéigs should be an easy exercise by
this point. You might think about how you would do it.) Insteave will build the trapezoidal map by a different

Lecture Notes 46 CMSC 754



approach, namely a randomized incremental algorfthrater, when we discuss the point-location problem, we
will see the advantages of this approach.

The incremental algorithm starts with the initial boundiegtangle (that is, one trapezoid) and then we add
the segments of the polygonal subdivision one by one in nendiaer. As each segment is added, we update
the trapezoidal map. Le&f; denote the subset consisting of the firetandom) segments, and [t denote the
resulting trapezoidal map.

To perform this update, we need to know which trapezoid tftecledpoint of the segment lies in. We will
address this question later when we discuss point locatfémthen trace the line segment from left to right,
by “walking” it through the existing trapezoidal map (seg.F1). Along the way, we discover which existing
trapezoids it intersects. We go back to these trapezoidiaritem up”. There are two things that are involved
in fixing process.

¢ The left and right endpoints of the new segment need to halletdiired from them.

e One of the earlier created walls might hit the new line segm®@then this happens the wall is trimmed
back. (We store which vertex shot the bullet path for thid veal we know which side of the wall to trim.)

The process is illustrated in Fig. 41.

Locate left enpoint and Shoot bullet paths 7 newly created
find wall intersections and trim walls trapezoids

(a) (b) (c)
Fig. 41: Incremental update.

Observe that the structure of the trapezoidal decompasiii@snot depend on the order in which the segments
are added. (This is why trimming back walls is so importanthis observation will be important for the
probabilistic analysis. The following is also importanthe analysis.

Claim: Ignoring the time spent to locate the left endpoint of an ssgthe time that it takes to insert tité
segment and update the trapezoidal ma(is;), wherek; is the number of newly created trapezoids.

Proof: Consider the insertion of thth segment, and Iét” denote the number of existing walls that this segment
intersects. We need to shoot four bullets (two from each eindpand then trim each of th& walls, for
a total of K + 4 operations that need to be performed. If the new segment ati¢noss any of the
walls, then we would get exactly four new trapezoids. Fortheafcthe K walls we cross, we add one
more to the number of newly created trapezoids, for a totdl 6f 4. Thus, lettingk; = K + 4 be the
number of trapezoids created, the number of update opesaisoexactlyk;. Each of these operations
can be performed ii®(1) time given any reasonable representation of the trapelzoidp as a planar
subdivision, for example, a doubly connected edge list (DCE

9Historically, the randomized incremental algorithm arosa asethod for computing the intersection of a collection of begments. Given
line segments that haveintersections, this algorithm runs @ (I + nlogn) time, which is superior to the plane sweep algorithm we diseds
earlier.

Lecture Notes 47 CMSC 754



Analysis: We will analyze the expected time to build the trapezoidapjressuming that segments are inserted in
random order. Clearly, the running time depends on how maailg\are trimmed with each intersection. In the
worst case, each newly added segment could resQitin walls being trimmed, and this would imply &(n?)
running time. We will show, however, that the expected ragriime is much smaller, in fact, we will show the
rather remarkable fact that, each time we insert a new segthenexpected number of wall trimmings is just
O(1). (Thisis quite surprising at first. If many of the segmenéslang, it might seem that every insertion would
cut throughO(n) trapezoids. What saves us is that, although a long segmeht auigthrough many trapezoids,
it shields later segments from cutting through many trajuezpAs was the case in our earlier lecture on linear
programming, we will make use of a backwards analysis tdoéstathis result.

There are two things that we need to do when each segmeneisdds First, we need to determine which cell
of the current trapezoidal map contains its left endpoine Will not discuss this issue today, but in our next
lecture, we will show that the expected time needed for thieration isO(n logn). Second, we need to trim
the walls that are intersected by the new segment. The relexadr this lecture will focus on this aspect of the
running time.

From the previous claim, we know that it suffices to count thenber of new trapezoids created with each
insertion. The main result that drives the analysis is prieskin the next lemma.

Lemma: Consider the randomized incremental construction of atrajolal map, and lét; denote the number
of new trapezoids created when thik segment is added. Thdi(k;) = O(1), where the expectation is
taken over all possible permutations of the segments asisieetion orders.

Proof: The analysis will be based on a backwards analysis. Reedlstich an analysis involves analyzing the
expected value assuming that the last insertion was random.
Let7; denote the trapezoidal map resulting after the insertiadheath segment. Because we are averaging
over all permutations, among tlissegments that are presentfiy each one has an equal probabilit}
of being the last one to have been added. For each of the ségmer want to count the number of
trapezoids that would have been created, hbden the last segment to be added.

We say that a trapezoid of the existing maglependson an segment, if s would have caused\ to
be created, had been added last (see Fig. 42). We want to count the numbeamézoids that depend
on each segment, and then compute the average over all sigrifeme letj(A, s) = 1 if segmentA
depends o, and 0 otherwise, then the expected value is

E(k;) = % > (no. of trapezoids that depend sh = % 3N s(As).

seS; seS; AeT;

Trapezoids that depend on s Segments that A depends on

Fig. 42: Trapezoid-segment dependencies.

Some segments might have resulted in the creation of lotpézoids and other very few. How do we
get a handle on this quantity? The trick is, rather than cthenhumber of trapezoids that depend on each

Lecture Notes 48 CMSC 754



segment, we count the number segments that each trapezmddieon. (This is the old combinatorial
trick of reversing the order of summation.) In other wordsa&e express the above quantity as:

E(k;) = % > > 6(As).

A€ET; s€S;

This quantity is much easier to analyze. In particular, éagpezoid is bounded by at most four sides.
(The reason it is “at most” is that degenerate trapezoidpassible which may have fewer sides.) The
top and bottom sides are each determined by a segmeht ahd clearly if either of these was the last to
be added, then this trapezoid would have come into exis@seeresult. The left and right sides are each
determined by a endpoint of a segmentSin and clearly if either of these was the last to be added, then
this trapezoid would have come into existefe.

In summary, each trapezoid is dependent on at most four sggmmplying that)
SinceT; consists oD (i) trapezoids we have

€S, 0(A,s) < 4.

1 1 1 N
E(k;) < 5;4 = AT = $40() = O(1).

Since the expected number of new trapezoids created withiesertion isO(1), it follows that the total number
of trapezoids that are created in the entire proceg(is). This fact is important in bounding the total time
needed for the randomized incremental algorithm.

The only question that we have not considered in the cortgtruis how to locate the trapezoid that contains
left endpoint of each newly added segment. We will consitler question, and the more general question of
how to do point location in our next lecture.

Lecture 10: Trapezoidal Maps and Planar Point Location

Point Location: Last time we presented a randomized incremental algorithrbdilding a trapezoidal map. Today
we consider how to modify this algorithm to answer point toma queries for the resulting trapezoidal de-
composition. The preprocessing time will B8n log n) in the expected case (as was the time to construct the
trapezoidal map), and the space and query time wilDye) andO(log n), respectively, in the expected case.
Note that this may be applied to any spatial subdivisionybgting it as a set of line segments, and then building
the resulting trapezoidal decomposition and using thia daticture.

Recall from the previous lecture that we treat the input astaos segmentss = {s1,...,s,} (permuted
randomly), thatS; denotes the subset consisting of the firstgments ob, and7; denotes the trapezoidal map
of S;. One important element of the analysis to remember fromtiiast is that each time we add a new line
segment, it may result in the creation of the collection of tieipezoids, which were said tdependon this
line segment. We presented a backwards analysis that thieerwhnew trapezoids that are created with each
stage is expected to i@(1). This will play an important role in today’s analysis.

Point Location Data Structure: The point location data structure is based on a rooted dideatyclic graph (DAG).
Each node will have either zero or two outgoing edges. Nod#sagro outgoing edges are callleédves The
leaves will be in 1-1 correspondence with the trapezoide@htap. The other nodes are caliettrnal nodes
and they are used to guide the search to the leaves. This DABeca@iewed as a variant of a binary tree, where
subtrees may be shared between different nodes. (Thisighiatiimportant for keeping the space@gn).)

There are two types of internal nodesnodesandy-nodes Eachz-node contains the poinpt(an endpoint of
one of the segments), and its two children correspond todheslying to the left and to the right of the vertical

10There is a bit of a subtlety here. What if multiple segments stisrendpoint? Note that the trapezoid is only dependent eriirst such
segment to be added, since this is the segment that causedtireteecome into existence. Also note that the same segmerfotinad the top or
bottom side might also provide the left or right endpoint. §deonsiderations only decrease the number of segments omavtiapezoid depends.

Lecture Notes 49 CMSC 754



line passing through (see Fig. 44(a)). Eaclr-node contains a pointer to a line segment of the subdivjsion
and the left and right children correspond to whether theygpeint is above or below the line containing this
segment, respectively (see Fig. 44(b)). (Don't be fooleth®yname—-node comparisons depend on both the
x andy values of the query point.) Note that the search will reaginade only if we have already verified that
the z-coordinate of the query point lies within the vertical sthht contains this segment.

@ -» ép e -» s X
Xiy Y\
:

() (b)

Fig. 43: (a)z-node and (b)-node.

Our construction of the point location data structure mgtbe incremental construction of the trapezoidal map.
In particular, if we freeze the construction just after thedrtion of any segment, the current structure will be a
point location structure for the current trapezoidal map.

In Fig. 44 below we show a simple example of what the data &tradooks like for two line segments. For
example, if the query point is in trapezold, we would first detect that it is to the right of enpojnt (right
child), then left ofg, (left child), then belows; (right child), then right ofps (right child), then above, (left
child).

Fig. 44: Trapezoidal map point location data structure.

Incremental Construction: The question is how do we build this data structure increaibf First observe that
when a new line segment is added, we only need to adjust thiemof the tree that involves the trapezoids that
have been deleted as a result of this new addition. Eachzin&pthat is deleted will be replaced with a search
structure that determines the newly created trapezoictctains it.

Suppose that we add a line segmentThis results in the replacement of an existing set of trajuszwith a

set of new trapezoids. As a consequence, we will replaceetives associated with each such deleted trapezoid
with a local search structure, which locates the new trapgethat contains the query point. There are three
cases that arise, depending on how many endpoints of theesgdjgrwithin the current trapezoid.

Single (left or right) endpoint: A single trapezoidA is replaced by three trapezoids, denofédY’, and Z.
Letting p denote the endpoint, we create:amode forp, and one child is a leaf node for the trapezaid
that lies outside vertical projection of the segment. Ferdther child, we createsgnode whose children
are the trapezoids andZ lying above and below the segment, respectively (see F{@)}#5

Two segment endpoints: This happens when the segment lies entirely inside the zoaghe In this case one
trapezoidA is replaced by four trapezoids], X, Y, andZ. Letting p andq denote the left and right

Lecture Notes 50 CMSC 754



endpoints of the segment, we create twoodes, one fop and the other fog. We create g-node for the
line segment, and join everything together (see Fig. 45(b))

No segment endpoints: This happens when the segment cuts completely through ezwaph A single trape-
zoid is replaced by two trapezoids, one above and one belewdfgment, denoted and Z. We replace
the leaf node for the original trapezoid withyanode whose children are leaf nodes associated Yvisimd
Z (see Fig. 45(c)).

Ty %‘ """ ey v el

ad XY : T T
/ / q U/X EA: //f
p, pZ : ' Y

Fig. 45: Line segment insertion and updates to the pointilmeatructure. The single-endpoint case (left) and the
two-endpoint case (right). The no-endpoint case is not show

It is important to notice that (through sharing) each tragappears exactly once as a leaf in the resulting
structure. An example showing the complete transformatidhe data structure after adding a single segment
is shown in Fig. 46 below.

Analysis: We claim that the size of the point location data structur@(is) and the query time i®(logn), both in
the expected case. As usual, the expectation depends ottie @nder of insertion, not on the line segments or
the location of the query point.

To prove the space bound 6f(n), observe that the number of new nodes added to the strucitireach new
segment is proportional to the number of newly created waigs. Last time we showed that with each new
insertion, the expected number of trapezoids that werdentemasO(1). Therefore, we add(1) new nodes
with each insertion in the expected case, implying thatdked size of the data structuredyn).

Analyzing the query time is a little subtler. In a normal pabbistic analysis of data structures we think of the
data structure as being fixed, and then compute expectati@rgandom queries. Here the approach will be
to imagine that we have exactly one query point to handle. qusy point can be chosen arbitrarily (imagine
an adversary that tries to select the worst-possible quaint)pbut this choice is made without knowledge of
the random choices the algorithm makes. We will show thagrga fixed query poing, the expected search
path length foi; is O(log n), where the expectation is over all segment insertion ordBiste that this does not
imply that the expected maximum depth of the tre@{%g n). We will discuss this issue later.)

Let ¢ denote the query point. Rather than consider the searchfgraghin the final search structure, we will
consider howg moves incrementally through the structure with the additib each new line segment. Let
A; denote the trapezoid of the map thalies in after the insertion of the firstsegments. Observe that if
A;_1 = A, then insertion of théth segment did not affect the trapezoid thatas in, and therefore will stay
where it is relative to the current search structure. (Fange, ifg was in trapezoidB prior to addingss in
Fig. 46 above, then the addition ef does not incur any additional cost to locating

However, ifA;_1 # A;, then the insertion of théh segment causegs trapezoid to be replaced by a different
one. As a resulty must now perform some additional comparisons to locatéf itgth respect to the newly

Lecture Notes 51 CMSC 754



Fig. 46: Line segment insertion.

created trapezoids that overlap_;. Since there are a constant number of such trapezoids (afouwoy there
will be O(1) work needed to locate with respect to these. In particulagrmay descend at most three levels in
the search tree after the insertion. The worst case occuhe itwo-endpoint case, where the query point falls
into one of the trapezoids lying above or below the segmeret Esg. 45(b)).

Since a point can descend at most 3 levels with each changs odritaining trapezoid, the expected length
of the search path tg is at most 3 times the number of times tlhathanges its trapezoid as a result of each
insertion. Forl < ¢ < n, let X;(¢q) denote the random event thathanges its trapezoid after tktt insertion,
and let ProbX;(¢)) denote the probability of this event. Lettidg(q) denote the average depthgin the final
search tree, we have

D(q) < SZProt(Xi(q)).

What saves us is the observation that, ascomes larger, the more trapezoids we have, and the sthallgrob-
ability that any random segment will affect a given trapezdn particular, we will show that PrélX;(q)) <

4/i. We do this through a backwards analysis. In particularsicar the trapezoid\,; that contained after the

ith insertion. Recall from the previous lecture that eachdrzaid is dependent on at most four segments, which
define the top and bottom edges, and the left and right sidéwdfapezoid. Clearly)\; would have changed
as a result of insertion if any of these four segments had been inserted last. Siyctyebrandom insertion
order, each segment is equally likely to be the last segnodmivte been added, the probability that oné\gs
dependent segments was the last to be inserted is atiioSherefore, ProbX;(q)) < 4/i.

From this, it follows that the expected path length for thergupointq is at most

D(q) < 32%% = 12271:%.
=1 =1

Recall thaty_;" % is the Harmonic series, and for largeits value is very nearlin n. Thus we have
D(q) < 12lnn = O(logn).

Lecture Notes 52 CMSC 754



Guarantees on Search Time:One shortcoming with this analysis is that even though tlaecketime is provably
small in the expected case for a given query point, it mightxst the case that once the data structure has been
constructed there is a single very long path in the searcittsite, and the user repeatedly performs queries
along this path. Hence, the analysis provides no guarantetf® running time of all queries.

Although we will not prove it, the book presents a strongsute namely that the length of the maximum search
path is alsaO(log n) with high probability. In particular, they prove the follavg.

Lemma: Given a set of, non-crossing line segments in the plane, and a parametef, the probability that
the total depth of the randomized search structure exceelgn + 1), is at mos/(n + 1)Mn1:25-3,

For example, fon = 20, the probability that the search path exce&@k(n + 1) is at mose/(n + 1)15. (The
constant factors here are rather weak, but a more careflyiséébeads to a better bound.)

Nonetheless, this itself is enough to lead to variant of tigerdhm for which O(logn) time is guaranteed.
Rather than just running the algorithm once and taking wigivés, instead run it repeatedly and keep track of
the structure’s depth as you go. As soon as the depth excéegla for some suitably chosef) then stop and
start over again with a new random sequence. For a suitatiie above lemma implies that such a failure will
occur with at most some very small constant probability. réfare, after a constant number of trials, we will
succeed in constructing a data structure of the desiredhdepind. A similar argument can be applied to the
space bounds.

Theorem: Given a set of non-crossing line segments in the plane, in expe€tedlog n) time, it is possible
to construct a point location data structure of (worst cagO(n) that can answer point location queries
in (worst case) timé& (log n).

Line Segment Intersection Revisited:Earlier this semester we presented a plane-sweep algofitheomputing
line segment intersection. The algorithm had a running @hé&((n + I)logn), wherel is the number of
intersection points. It is interesting to note that the mnized approach we discussed today can be adapted to
deal with intersecting segments as well. In particular, néver a segment is added, observe that in addition to
it stabbing vertical segments, it may generally cross owver af the existing segments. When this occurs, the
algorithm must determine the trapezoid that is hit on theiogide of the segment, and then continue the process
of walking the segment. Note that the total size of the finabdeposition isO(n+ I'), which would suggest that
the running time might be the same as the plane-sweep dlgorit is remarkable, therefore, that the running
time is actually better. Intuitively, the reason is that th@ogn) factor in the randomized algorithm comes
from the point location queries, which are applied only te kft endpoint of each of the segments. With a
bit of additional work, it can be shown that the adaptatiothefrandomized algorithm to general (intersecting)
segments runs i®(I + nlogn) time, thus removing the log factor from tieerm.

Lecture 11: Voronoi Diagrams and Fortune’s Algorithm

Voronoi Diagrams: Voronoi diagrams are among the most important structuresrimputational geometry. A Voronoi
diagram encodes proximity information, that is, what isseldo what. LetP = {p1,p2,...,p,} be a set of
points in the plane (or in any dimensional space), which wWesiges Define)(p;), the Voronoi cellfor p;, to
be the set of pointg in the plane that are closer tg than to any other site. That is, the Voronoi cell fgris
defined to be:

V(pi) ={q | llpgll < llpjqll,Vi # i},

1/2
where||pq|| = (Zf:j (p; — qj)Q) denotes the Euclidean distance between pgirasdg. The Voronoi

diagram can be defined over any metric and in any dimensidnwyéuwill concentrate on the planar, Euclidean
case here.

Another way to definé’(p;) is in terms of the intersection of halfplanes. Given twossjiteandp;, the set of
points that are strictly closer jg than top; is just theopen halfplanevhose bounding line is the perpendicular

Lecture Notes 53 CMSC 754



bisector betweep; andp;. Denote this halfplané(p;,p;). It is easy to see that a poiaties in V(p;) if and
only if ¢ lies within the intersection of(p;, p;) for all j # 4. In other words,

V(pi) = [ h(pi.py)-

J#i

Since the intersection of halfplanes is a (possibly unbedhdonvex polygon, it is easy to see thdp;) is a
(possibly unbounded) convex polygon. Finally, define \oeonoi diagramof P, denoted VofP) to be what

is left of the plane after we remove all the (open) Voronolscelt is not hard to prove (see the text) that the
Voronoi diagram consists of a collection of line segmentsictv may be unbounded, either at one end or both
(see Fig. 47).

Fig. 47: Voronoi diagram

Voronoi diagrams have a huge number of important applinatia science and engineering. These include
answering nearest neighbor queries, computational mtwghand shape analysis, clustering and data mining,
facility location, multi-dimensional interpolation.

Properties of the Voronoi diagram: Here are some properties of the Voronoi diagrams in the plane

Voronoi complex: Clearly the diagram is a cell complex whose faces are (plyssitbounded) convex poly-
gons. Each point on an edge of the Voronoi diagram is eqaiatigtom its two nearest neighbagss and
p;j. Thus, there is a circle centered at such a point suchpihatdyp; lie on this circle, and no other site is
interior to the circle (see Fig. 48(a)).

Fig. 48: Properties of the Voronoi diagram.

Voronoi vertices: It follows that the vertex at which three Voronoi ceMgp;), V(p,), andV(py) intersect,
called aVoronoi vertexis equidistant from all sites (see Fig. 48(b)). Thus it is teater of the circle
passing through these sites, and this circle contains rer sites in its interior.

Degree: Generally three points in the plane define a unique circleelinake the general position assumption
that no four sites are cocircular, then the vertices of th@hboi diagram all have degree three.

Lecture Notes 54 CMSC 754



Convex hull: A cell of the Voronoi diagram is unbounded if and only if therresponding site lies on the
convex hull. (Observe that a site is on the convex hull if anly df it is the closest point from some point
at infinity.) Thus, given a Voronoi diagram, it is easy to extrthe convex hull in linear time.

Size: If n denotes the number of sites, then the Voronoi diagram is maplgraph (if we imagine all the
unbounded edges as going to a common vertex infinity) witltcteka faces. It follows from Euler's
formulal! that the number of Voronoi vertices is rougtly and the number of edges is roughly. (See
the text for details. In higher dimensions the diagram’s eiratorial complexity ranges fro(n) up to
O(nl4/21)))

Computing Voronoi Diagrams: There are a number of algorithms for computing the Voronagthm of a set of,
sites in the plane. Of course, there is a naide? log n) time algorithm, which operates by computibgp;)
by intersecting the: — 1 bisector halfplanes(p;, p;), for j # i. However, there are much more efficient ways,
which run inO(nlogn) time. Since the convex hull can be extracted from the Vordiegram inO(n) time,
it follows that this is asymptotically optimal in the worsése.

Historically, O(n?) algorithms for computing Voronoi diagrams were known fommaears (based on incre-
mental constructions). When computational geometry caoregab more complex, but asymptotically superior
O(nlogn) algorithm was discovered. This algorithm was based on eigidd-conquer. But it was rather com-
plex, and somewhat difficult to understand. Later, StevemtuRe discovered a plane sweep algorithm for the
problem, which provided a simplé?(n log n) solution to the problem. It is his algorithm that we will diss.
Somewhat later still, it was discovered that the incremeaitgorithm is actually quite efficient, if it is run as a
randomized incremental algorithm. We will discuss a vdridithis algorithm later when we talk about the dual
structure, called the Delaunay triangulation.

Fortune’s Algorithm: Before discussing Fortune’s algorithm, it is interestiogonsider why this algorithm was not
invented much earlier. In fact, it is quite a bit trickier thany plane sweep algorithm we have seen so far.
The key to any plane sweep algorithm is the ability to disc@ieupcoming events in an efficient manner. For
example, in the line segment intersection algorithm we ictemed all pairs of line segments that were adjacent
in the sweep-line status, and inserted their intersectamt jn the queue of upcoming events. The problem with
the Voronoi diagram is that of predicting when and where fheoming events will occur.

To see the problem, suppose that you are designing a plarepsigorithm. Behind the sweep line you have
constructed the Voronoi diagram based on the points thag baen encountered so far in the sweep. The
difficulty is that a site that lieaheadof the sweep line may generate a Voronoi vertex thatdesindthe sweep
line. How could the sweep algorithm know of the existenceh@ vertex until it sees the site. But by the time
it sees the site, it is too late. It is thegpanticipated eventthat make the design of a plane sweep algorithm
challenging (see Fig. 49).

The Beach Line: The sweeping process will involve sweeping two differerjeob First, there will be a horizontal
sweep line, moving from top to bottom. We will also maintaimzamonotonic curve called beach line (It is
so nhamed because it looks like waves rolling up on a beacle)b€hach line lags behind the sweep line in such
a way that it is unaffected by sites that have yet to be seems,there are no unanticipated events on the beach
line. The sweep-line status will be based on the manner ictwiie Voronoi edges intersect the beach line, not
the actual sweep line.

Let’s make these ideas more concrete. We subdivide thela#ying above the sweep line into two regions:
those points that are closer to some gitbove the sweep line than they are to the sweep line itselfitase
points that are closer to the sweep line than any site abevevikep line.

What are the geometric properties of the boundary betweese ttveo regions? The set of poinjghat are
equidistant from the sweep line to their nearest site ablowestveep line is called tHeeach line Observe that
for any pointg above the beach line, we know that its closest site cannofféeted by any site that lies below

11Euler's formula for planar graphs states that a planar grafinawertices e edges, and faces satisfies — e + f = 2. There aren faces,
and since each vertex is of degree three, we Bave- 2¢, from which we infer thav — (3/2)v + n = 2, implying thatv = 2n — 4. A similar
argument can be used to bound the number of edges.

Lecture Notes 55 CMSC 754



unantcipated events

Fig. 49: Plane sweep for Voronoi diagrams. Note that thetjposof the indicated vertices depends on sites that have

not yet been encountered by the sweep line, and hence arewnka the algorithm. (Note that the sweep line moves
from top to bottom.)

the sweep line. Hence, the portion of the Voronoi diagran liea above the beach line is “safe” in the sense

that we have all the information that we need in order to camfiywithout knowing about which sites are still
to appear below the sweep line).

What does the beach line look like? Recall from high schoohwgtoy that the set of points that are equidistant
from a point (in this case a site) and a line (in this case theepWine) is a parabola (see Fig. 50(a)). Clearly the
parabola’s shape changes continuously as the sweep linesncowntinuously. With a little analytic geometry,

it is easy to show that the parabola becomes “skinnier” whersite is closer to the line and becomes “fatter”
as the sweep line moves farther away. In the degenerate dze thve line contains the site the parabola

degenerates into a vertical ray shooting up from the siteu @&hould work through the distance equations to
see why this is s0.)

P a bisector for
pand /¢

¢
() (b)

' beach line

1 sweep line

Fig. 50: The beach line. Notice that only the portion of thedvmi diagram that lies above the beach line is computed.
The sweep-line status maintains the intersection of thendrdiagram with the beach line.

Thus, the beach line consists of fbever envelopef these parabolas, one for each site (see Fig. 50(b)). Nate t
the parabola of some sites above the beach line will not ttheefower envelope and hence will not contribute
to the beach line. Because the parabolagamnotone, so is the beach line. Also observe that the pdietev
two arcs of the beach line intersect, which we cdit@akpoint is equidistant from two sites and the sweep line,
and hence must lie on some Voronoi edge. In particular, ibtech line arcs corresponding to sitgsndp;
share a common breakpoint on the beach line, then this bo&wkes on the Voronoi edge betwegnandyp;.
From this we have the following important characterization

Lemma: The beach line is am-monotone curve made up of parabolic arcs. The breakpdhesi§, vertices)
of the beach line lie on Voronoi edges of the final diagram.

Fortune’s algorithm consists of simulating the growth of tieach line as the sweep line moves downward,
and in particular tracing the paths of the breakpoints ag titael along the edges of the Voronoi diagram. Of
course, as the sweep line moves, the parabolas forming #uoh tiee change their shapes continuously. As with

Lecture Notes 56 CMSC 754



all plane-sweep algorithms, we will maintain a sweep-litats and we are interested in simulating the discrete
event points where there is a “significant event”, that iy, @rent that changes the topological structure of the
Voronoi diagram or the beach line.

Sweep-Line Status: The algorithm maintains the current locatignrdoordinate) of the sweep line. It stores,
in left-to-right order the sequence of sites that define #mch line. (We will say more about this later.)
Important: The algorithm doesot store the parabolic arcs of the beach line. They are shovetysiolr
conceptual purposes.

Events: There are two types of events:

Site events: When the sweep line passes over a new site a new paraboliclbbe wiserted into the beach
line.

Voronoi vertex events: (What our text callircle eventy When the length of an arc of the beach line
shrinks to zero, the arc disappears and a new Voronoi veriteRencreated at this point.

The algorithm consists of processing these two types ofteveks the Voronoi vertices are being discovered
by Voronoi vertex events, it will be an easy matter to updhtediagram as we go (assuming any reasonable
representation of this planar cell complex), and so to Ihrkéntire diagram together. Let us consider the two
types of events that are encountered.

Site events: A site event is generated whenever the horizontal sweepplisses over a sitg¢. As we mentioned
before, at the instant that the sweep line touches the piténassociated parabolic arc will degenerate to a
vertical ray shooting up from the point to the current beach.| As the sweep line proceeds downwards, this
ray will widen into an arc along the beach line. To processt@ event we determine the arc of the sweep
line that lies directly above the new site. (Let us make theega position assumption that it does not fall
immediately below a vertex of the beach line.) petlenote the site generating this arc. We then split this arc in
two by inserting a new entry at this point in the sweep-lirsgs. (Initially this corresponds to a infinitesimally
small arc along the beach line, but as the sweep line sweeghisrarc will grow wider. Thus, the entry for
(...,pj,...) onthe sweep-line status is replaced by the triple, p;, p;, p;, . . .) (See Fig. 51).

Prior to event At the event After the event
(---pjpR-- ) (-o-pjpipjpg---) (- -pjpiDjPK-- )
oDk
oDj
1 P

Fig. 51: Site event.

It is important to consider whether this is the only way thevrarcs can be introduced into the sweep line. In
fact it is. We will not prove it, but a careful proof is given the text. As a consequence, it follows that the
maximum number of arcs on the beach line can be at st 1, since each new point can result in creating
one new arc, and splitting an existing arc, for a net incred$e&o arcs per point (except the first). Note that a
point may generally contribute more than one arc to the blaeh(As an exercise you might consider what is
the maximum number of arcs a single site can contribute.)

The nice thing about site events is that they are all knowrdiraace. Thus, the sites can be presorted by the
y-coordinates and inserted as a batch into the event priquigye.

\Voronoi vertex events: In contrast to site events, Voronoi vertex events are gésegidynamically as the algorithm
runs. As with the line segment intersection algorithm, thedrtant idea is that each such event is generated

Lecture Notes 57 CMSC 754



by objects that aradjacenton the beach line (and thus, can be found efficiently). Howewdike the segment
intersection where pairs of consecutive segments gemkegaits, here triples of points generate the events.

In particular, consider any three consecutive site®;, andp, whose arcs appear consecutively on the beach
line from left to right (see Fig. 52(a). Further, suppose tha circumcircle for these three sites lies at least
partially below the current sweep line (meaning that theowor vertex has not yet been generated), and that
this circumcircle contains no points lying below the sweiee (meaning that no future point will block the
creation of the vertex).

Consider the moment at which the sweep line falls to a poirgreftit is tangent to the lowest point of this
circle. At this instant the circumcenter of the circle is mligtant from all three sites and from the sweep line.
Thus all three parabolic arcs pass through this center poipiying that the contribution of the arc fropy
has disappeared from the beach line. In terms of the Voromagram, the bisector®;, p;) and(p,, px) have
met each other at the Voronoi vertex, and a single biséptop,) remains. Thus, the triple of consecutive sites
Pi, pj, pr ON the sweep-line status is replaced withp, (see Fig. 52).

Prior to event At the event After the event
(. -DjDiD;Py; - - ) (- -PjDiPk - - y (- -PjDiPk - - y

(a) (b)
Fig. 52: Voronoi vertex event.

Sweep-line algorithm: We can now present the algorithm in greater detail. The maictsires that we will maintain
are the following:

(Partial) Voronoi diagram: The partial Voronoi diagram that has been constructed seifdbe stored in any
reasonable data structure for storing planar subdivisfongxample, a doubly-connected edge list. There
is one technical difficulty caused by the fact that the diag@ntains unbounded edges. This can be
handled by enclosing everything within a sufficiently latlgminding box. (It should be large enough to
contain all the Voronoi vertices, but this is not that easgdmpute in advance.) An alternative is to create
an imaginary Voronoi vertex “at infinity” and connect all thebounded edges to this imaginary vertex.

Beach line: The beach line consists of the sorted sequence of sites velnosdéorm the beach line. It is rep-
resented using a dictionary (e.g. a balanced binary tre&iprlist). As mentioned above, weo not
explicitly store the parabolic arcs. They are just theretlierpurposes of deriving the algorithm. Instead
for each parabolic arc on the current beach line, we storsitb¢hat gives rise to this arc.

The key search operation is that of locating the arc of theldiae that lies directly above a newly
discovered site. (As an exercise, before reading the neagpaph you might think about how you would
design a binary search to locate this arc, given that you laeNg the sites, not the actual arcs.)

Between each consecutive pair of sitg@ndp;, there is a breakpoint. Although the breakpoint moves as
a function of the sweep line, observe that it is possible tofpate the exact location of the breakpoint as a
function ofp;, p;, and the curreng-coordinate of the sweep line. In particular, the breakpisithe center

of a circle that passes through, p; and is tangent to the sweep line. (Thus, as with beach limesjo
not explicitly store breakpointd®Rather, we compute them only when we need them.) Once th&wint

is computed, we can then determine whether a newly addedsdibeits left or right. Using the sorted
ordering of the sites, we use this primitive comparison feeda binary search for the arc lying above the
new site.

The important operations that we will have to support on #sgch line are:

Lecture Notes 58 CMSC 754



Search: Given the curreng-coordinate of the sweep line and a new sitedetermine the arc of the beach
line lies immediately abovg;. Letp; denote the site that contributes this arc. Return a refertmc
this beach line entry.

Insert and split: Insert a new entry fop; within a given arg; of the beach line (thus effectively replacing
the single arg. . ., p;,...) with the triple(.. ., p;, pi, pj, . . .). Return a reference to the newly added
beach line entry (for future use).

Delete: Given a reference to an entpy; on the beach line, delete this entry. This replaces a triple
(.-.,DPi,Dj, Pk, - . .) With the pair(..., p;, pg, .. .).

It is not difficult to modify a standard dictionary data stiwre to perform these operations @(logn)
time each.

Event queue: The event queue is a priority queue with the ability both teeih and delete new events. Also
the event with the largegt-coordinate can be extracted. For each site we storg-dtordinate in the
queue. All operations can be implementedifiog n) time assuming that the priority queue is stored as
an ordered dictionary.

For each consecutive tripg, p;, pi, on the beach line, we compute the circumcircle of these poflive’ll
leave the messy algebraic details as an exercise, but thisecdone irO(1) time.) If the lower endpoint
of the circle (the minimumy-coordinate on the circle) lies below the sweep line, therckgate a Voronoi
vertex event whosg-coordinate is theg-coordinate of the bottom endpoint of the circumcircle. \Wae
this in the priority queue. Each such event in the prioritggg has a cross link back to the triple of sites
that generated it, and each consecutive triple of sites ltagss link to the event that it generated in the
priority queue.

The algorithm proceeds like any plane sweep algorithm. Therithm starts by inserting the topmost vertex
into the sweep-line status. We extract an event, processdtgo on to the next event. Each event may result in
a modification of the Voronoi diagram and the beach line, aagt masult in the creation or deletion of existing
events.

Here is how the two types of events are handled in somewhategrdetail.

Site event: Let p; be the new site (see Fig. 51 above).
(1) Advance the sweep line so that it passes thraygpply the above search operation to determine
the beach line arc that lies immediately abgyelLetp; be the corresponding site.
(2) Applying the above insert-and-split operation, insgrt. new entry fop;, thus replacing. . ., p;, .. .)
with (..., p;,pi,pj, .. ).
(3) Create a new (dangling) edge in the Voronoi diagram, Wwhés on the bisector betweenandp;.

(4) Some old triples that involved; may need to be deleted and some new triples involyingill be
inserted, based on the change of neighbors on the beackilimestraightforward details are omitted.)
Note that the newly created beach-line triplg p;, p; does not generate an event because it only
involves two distinct sites.

Voronoi vertex event: Let p;, p;, andp;, be the three sites that generated this event, from left tat (gee
Fig. 52 above).
(1) Delete the entry fop; from the beach line status. (Thus eliminating its assodiate.)

(2) Create a new vertex in the Voronoi diagram (at the circemter of {p;,p;,px}) and join the two
Voronoi edges for the bisectots;, p,), (p;, px) to this vertex.

(3) Create a new (dangling) edge for the bisector betweamdp;,.

(4) Delete any events that arose from triples involving tteecdip,;, and generate new events correspond-
ing to consecutive triples involving; andpy. (There are two of them. The straightforward details are
omitted.)

Lecture Notes 59 CMSC 754



The analysis follows a typical analysis for plane sweep. hEaent involvesO(1) processing time plus a
constant number operations to the various data structtimess{veep line status and the event queue). The
size of the data structures @@(n), and each of these operations tak&dogn) time. Thus the total time is
O(nlogn), and the total space @&(n).

Lecture 12: Delaunay Triangulations: General Properties

Delaunay Triangulations: Last time we discussed the topic of Voronoi diagrams. Todaycansider the related
structure, called thBelaunay triangulationDT). The Voronoi diagram of a set of sites in the plane is aafa
subdivision, that is, a cell complex. Thiual of such subdivision is another subdivision that is defined as
follows. For each face of the Voronoi diagram, we create gexefcorresponding to the site). For each edge
of the Voronoi diagram lying between two sitesandp;, we create an edge in the dual connecting these two
vertices. Finally, each vertex of the Voronoi diagram csprends to a face of the dual.

The resulting dual graph is a planar subdivision. Assumirgegal position, the vertices of the Voronoi diagram
have degree three, it follows that the faces of the resuttirg graph (excluding the exterior face) are triangles.
Thus, the resulting dual graph is a triangulation of thessitalled theDelaunay triangulatior(see Fig. 53.)

Fig. 53: The Delaunay triangulation of a set of points (sbfids) and the Voronoi diagram (broken lines).

Delaunay triangulations have a number of interesting pis that are consequences of the structure of the
Voronoi diagram.

Convex hull: The boundary of the exterior face of the Delaunay triangmiais the boundary of the convex
hull of the point set.

Circumcircle property: The circumcircle of any triangle in the Delaunay triangigatis empty (contains no
sites of P).
Proof: This is because the center of this circle is the correspgndiiral VVoronoi vertex, and by definition
of the Voronoi diagram, the three sites defining this vertexiis nearest neighbors.

Empty circle property: Two sitesp, andp; are connected by an edge in the Delaunay triangulation,df an
only if there is an empty circle passing throughandp;.
Proof: If two sitesp; andp; are neighbors in the Delaunay triangulation, then thels@ek neighbors in
the Voronoi diagram, and so for any point on the Voronoi edgfe/ben these sites, a circle centered at this
point passing through; andp; cannot contain any other point (since they must be clos€stjversely,
if there is an empty circle passing throughandp;, then the center of this circle is a point on the edge
of the Voronoi diagram betwegn andp;, because is equidistant from each of these sites and there is
no closer site. Thus the Voronoi cells of two sites are adjaicethe Voronoi diagram, implying that there
edge is in the Delaunay triangulation.

Closest pair property: The closest pair of sites iR are neighbors in the Delaunay triangulation.

Lecture Notes 60 CMSC 754



Proof: Suppose thap; andp; are the closest sites. The circle havingandp; as its diameter cannot
contain any other site, since otherwise such a site woulddseicto one of these two points, violating the
hypothesis that these points are the closest pair. Thesafur center of this circle is on the Voronoi edge
between these points, and so it is an empty circle.

If the sites are not in general position, in the sense thatdomore are cocircular, then the Delaunay triangula-
tion may not be a triangulation at all, but just a planar grégice the Voronoi vertex that is incident to four or
more Voronoi cells will induce a face whose degree is equtiiémumber of such cells). In this case the more
appropriate term would bBelaunay graph However, it is common to either assume the sites are in géner
position (or to enforce it through some sort of symbolic pdyation) or else to simply triangulate the faces of
degree four or more in any arbitrary way. Henceforth we vgaame that sites are in general position, so we do
not have to deal with these messy situations.

Given a point sef® with n sites where there arie sites on the convex hull, it is not hard to prove by Euler’s
formula that the Delaunay triangulation Has—2—h triangles, an@n—3—h edges. The ability to determine the
number of triangles frora andh only works in the plane. In 3-space, the number of tetrahieditae Delaunay
triangulation can range from®(n) up to O(n?). In dimensionn, the number of simplices (thédimensional
generalization of a triangle) can range as higiDés(4/21).

Minimum Spanning Tree: The Delaunay triangulation possesses some interestingepies that are not directly
related to the Voronoi diagram structure. One of these igeitstion to the minimum spanning tree. Given a
set ofn points in the plane, we can think of the points as definirigualidean graphwhose edges are e@)
(undirected) pairs of distinct points, and edge, p,) has weight equal to the Euclidean distance figrto p;.
A minimum spanning tree is a set af— 1 edges that connect the points (into a free tree) such thabtake
weight of edges is minimized. We could compute the MST usingsKal's algorithm. Recall that Kruskal's
algorithm works by first sorting the edges and inserting tloa® by one. We could first compute the Euclidean
graph, and then pass the result on to Kruskal's algorithma total running time 0 (n? log n).

However there is a much faster method based on Delaunagtietions. First compute the Delaunay trian-
gulation of the point set. We will see later that it can be doné(n logn) time. Then compute the MST of
the Delaunay triangulation by Kruskal's algorithm and ratthe result. This leads to a total running time of
O(nlogn). The reason that this works is given in the following theorem

Theorem: The minimum spanning tree of a set of poiitgin any dimension) is a subgraph of the Delaunay
triangulation.

Proof: LetT be the MST forP, letw(T") denote the total weight & . Leta andb be any two sites such thab
is an edge of. Suppose to the contrary thdi is not an edge in the Delaunay triangulation. This implies
that there is no empty circle passing throughndb, and in particular, the circle whose diameter is the
segment:b contains a site, call it (see Fig. 54.)

Fig. 54: The Delaunay triangulation and MST.

The removal ofub from the MST splits the tree into two subtrees. Assume withoss of generality that
c lies in the same subtree as Now, remove the edgeb from the MST and add the edge in its place.
The result will be a spanning tré& whose weight is

w(T’) = w(T) +[lbe]| — [lab]l < w(T).

Lecture Notes 61 CMSC 754



The last inequality follows becausé is the diameter of the circle, implying thbc|| < |lab||. This
contradicts the hypothesis tHAtis the MST, completing the proof.

By the way, this suggests another interesting question. gnadl triangulations, we might ask, does the Delau-
nay triangulation minimize the total edge length? The amssveo (and there is a simple four-point counterex-
ample). However, this claim was made in a famous paper onuDalatriangulations, and you may still hear
it quoted from time to time. The triangulation that miniméziotal edge weight is called theinimum weight
triangulation Recently it was proved that this problem is NP-hard. (Thizbfem has been open for many
years, dating back to the original development of the theblyP-completeness back in the 1970’s.)

Spanner Properties: A natural observation about Delaunay triangulations isitesa&dges would seem to form a res-
onable transporation road network between the points. §eirting a few examples, it is natural to conjecture
that the length of the shortest path between two points iraagsl Delaunay triangulation is not significantly
longer than the straight-line distance between these foint

This is closely related to the theory of geometric spanrtbet, is, geometric graphs whose shortest paths are
not too long. Consider any point sBtand a straight-line grap& whose vertices are the points Bf For any
two pointsp,q € P, letdg(p,q) denote the length of the shortest path frprto ¢ in G, where the weight of
each edge is its Euclidean length. Given any paranietet, we say thats is at-spannetif for any two points
p,q € P, the shortest path length betweeandq in G is at most a factot longer than the Euclidean distance
between these points, that is

dc(p,q) < t|lpqll

Observe that wheh= 1, the graphG must be the complete graph, consisting@)‘ = O(n?) edges. Of interest
is whether there exist spanners havingn) edges.

It can be proved that the edges of the Delaunay trianguldtion a spanner (see Fig. 55). We will not prove
the following result, which is due to Keil and Gutwin.

Theorem: Given a set of points? in the plane, the Delaunay triangulation 6fis a t-spanner fort =
4m/3/9 ~ 2.4.

Fig. 55: Spanner property of the Delaunay Triangulation.

In fact, it is conjectured that the Delaunay triangulatism {7 /2)-spanner, but this has never been proved (and
it seems to be a hard problem).

Maximizing Angles and Edge Flipping: Another interesting property of Delaunay triangulatiomshat among all
triangulations, the Delaunay triangulation maximizesrttieimum angle. This property is important, because it
implies that Delaunay triangulations tend to avoid skimmyrigles. This is useful for many applications where
triangles are used for the purposes of interpolation.

In fact a much stronger statement holds as well. Among ahgilations with the same smallest angle, the
Delaunay triangulation maximizes the second smallesteaagid so on. In particular, any triangulation can be
associated with a sorteahgle sequencehat is, the increasing sequence of angtes ao, . . ., a,,) appearing

in the triangles of the triangulation. (Note that the lengftithe sequence will be the same for all triangulations
of the same point set, since the number depends ontyamdh.)

Lecture Notes 62 CMSC 754



Theorem: Among all triangulations of a given planar point set, theddelay triangulation has the lexicograph-
ically largest angle sequence, and in particular, it max@sithe minimum angle.

Before getting into the proof, we should recall a few basatdabout angles from basic geometry. First, recall
that if we consider the circumcircle of three points, theoheangle of the resulting triangle is exactly half the
angle of the minor arc subtended by the opposite two poiatsgathe circumcircle. It follows as well that if
a point is inside this circle then it will subtend a larger kengnd a point that is outside will subtend a smaller
angle. Thus, in Fig. 56(a) below, we hatie> 0, > 03.

01 > 09 > 63

Fig. 56: Angles and edge flips.

We will not give a formal proof of the theorem. (One appearthimtext.) The main idea is to show that for
any triangulation that fails to satisfy the empty circle peaty, it is possible to perform a local operation, called
anedge flip which increases the lexicographical sequence of anglesdye flip is an important fundamental
operation on triangulations in the plane. Given two adjateanglesAabc and Acda, such that their union
forms a convex quadrilaterabed, the edge flip operation replaces the diaganralith bd. Note that it is only
possible when the quadrilateral is convex.

Suppose that the initial triangle pair violates the emptgieicondition, in that point lies inside the circumcircle

of Aabce. (Note that this implies thdt lies inside the circumcircle of\cda.) If we flip the edge it will follow

that the two circumcircles of the two resulting trianglés;bd and Abed are now empty (relative to these four
points), and the observation above about circles and apgdess that the minimum angle increases at the same
time. In particular, in Fig. 56(b) and (c), we have

¢ab > eab ¢bc > ebc ¢cd > 90d (bda > gda'

There are two other angles that need to be compared as wel/¢caspot them?). It is not hard to show that,
after swapping, these other two angles cannot be smallerttigaminimum of,;, 0., 0.4, andfd,,. (Can you
see why?)

Since there are only a finite number of triangulations, thexess must eventually terminate with the lexico-
graphically maximum triangulation, and this triangulatimust satisfy the empty circle condition, and hence is
the Delaunay triangulation.

Note that the process of edge-flipping can be generalizemniplisial complexes in higher dimensions. How-
ever, the process does not generally replace a fixed numlibeéamdgles with the same number, as it does in the
plane (replacing two old triangles with two new trianglegpr example, in 3-space, the most basic flip can
replace two adjacent tetrahedra with three tetrahedrayiaed/ersa. Although it is known that in the plane any
triangulation can be converted into any other through acjods sequence of edge flips, this is not known in
higher dimensions.

Lecture 13: Delaunay Triangulations: Incremental Construction

Constructing the Delaunay Triangulation: We will present a simple randomized(n logn) expected time algo-
rithm for constructing Delaunay triangulations fersites in the plane. The algorithm is remarkably similar in

Lecture Notes 63 CMSC 754



spirit to the randomized algorithm for trapezoidal map &lthon in that not only builds the triangulation but also
provides a point-location data structure as well. We will discuss the point-location data structure in detalil,
but the details are easy to fill in.

As with any randomized incremental algorithm, the idea iggert sites in random order, one at a time, and
update the triangulation with each new addition. The isgunadved with the analysis will be showing that after
each insertion the expected number of structural chang#®idiagram igD(1). As with other incremental
algorithm, we need some way of keeping track of where newdgiited sites are to be placed in the diagram.
We will describe a somewhat simpler method than the one wetindle trapezoidal map. Rather than building
a data structure, this one simply puts each of the unins@xads into a bucket according to the triangle that
contains it in the current triangulation. In this case, wk méed to argue that the expected number of times that
a site is rebucketed 9(log n).

Incircle Test: The basic issue in the design of the algorithm is how to upttedriangulation when a new site is
added. In order to do this, we first investigate the basic gnttgs of a Delaunay triangulation. Recall that a
triangle Aabc is in the Delaunay triangulation, if and only if the circumadé of this triangle contains no other
site inits interior. (Recall that we make the general posiissumption that no four sites are cocircular.) How do
we test whether a sitélies within the interior of the circumcircle afabc? It turns out that this can be reduced
to a determinant computation. First off, let us assume thatsequencéabed) defines a counterclockwise
convex polygon. (If it does not becaugdies inside the trianglé\abc then clearlyd lies in the circumcircle
for this triangle. Otherwise, we can always relab&t so this is true.) Under this assumptiahlies in the
circumcircle determined by thé&uabc if and only if the following determinant is positive. This ¢alled the
incircle test We will assume that this primitive is available to us.

2
Yy

by b2+0b7

a; ay a:+a

. by
inCircle(a, b,c,d) = det o e c§+cg

d, d, d2+d

> 0.

—_

We will not prove the correctness of this test, but we willwresomewhat simpler assertion, namely that if the
above determinant is equal to zero, then the four points @ciaular. The four points are cocircular if there
exists a center point = (¢, ¢,) and a radius such that

(az — ‘Ir)z + (ay — qy)2 = r27

and similarly for the other three points. Expanding this aaliecting common terms we have

and similarly for the other three points, ¢, andd. If we let X, X5, X3 and X, denote the columns of the
above matrix (e.9.X1 = (az, b, ¢z, d,) ") we have

X3 — 2. X1 —2q, X2 + (¢} + ¢ — %) X4 = 0.

Since there is a linear combination of these vectors thatssion®, it follows that these vector are linearly
dependent. From standard linear algebra, we know that tlwenos of a matrix are linearly dependent if and
only if the determinant of the matrix is zero. We will leaves tbompletion of the proof (involving inside and
outside) as an exercise.

Incremental update: When we add the next sitg;, the problem is to convert the current Delaunay triangaitaitito
a new Delaunay triangulation containing this site. Thid b done by creating a non-Delaunay triangulation
containing the new site, and then incrementally “fixing”stlitliangulation to restore the Delaunay properties.
The basic changes are:

e Joining a site in the interior of some triangle to the triagertices (see Fig. 57(a)).

Lecture Notes 64 CMSC 754



Fig. 57: Basic triangulation changes.

e Performing aredge flip(see Fig. 57(b)).

Both of these operations can be performedifi) time, assuming that the triangulation is maintained in any
reasonable way, say, as a double-connected edge list.

The algorithm that we will describe has been known for margryebut was first analyzed by Guibas, Knuth,
and Sharir. The algorithm starts within an initial triangtidn such that all the points lie in the convex hull. This
can be done by enclosing the points in a suitably large tl&alfgOur book suggests a symbolic alternative,
which is more reliable. Generate a triangle that contaihthalpoints, but themodifythe incircle test so that
the vertices of this enclosing triangbehaveas if they are infinitely far away.

The sites are added in random order. When a newpsitseadded, we find the triangléabc of the current
triangulation that contains this site (we will see how [pt@rsert the site in this triangle, and join this site to
the three surrounding vertices. This creates three nemglea,\pab, Apbe, andApca, each of which may or
may not satisfy the empty-circle condition. How do we te&2ror each of the triangles that have been added,
we check the vertex of the triangle that lies on the oppodite af the edge that does not incluge(lf there is

no such vertex, because this edge is on the convex hull, tikearevdone.) If this vertex fails the incircle test
(that is, if it is inside the circumcircle), then we swap tltye (creating two new triangles that are adjacent to
p). This replaces one triangle that was incidenp teith two new triangles. We repeat the same test with these
triangles. An example is shown in Fig. 58.

Apab: Bad!
flip ab

Apad: OK
Apdb: Bad!

flip db
Apde: OK
Apeb: OK
Apbc: OK

Apca: Bad!
flip ca

Fig. 58: Point insertion.

The algorithm for the incremental algorithm is shown belamad an example is presented in Fig. 58. The current

1250me care must be taken in the construction of this enclosampte. It is not sufficient that it simply contains all the pisi. It should be so
large that the vertices of the triangle do not lie in the aincircles of any of the triangles of the final triangulation.

Lecture Notes 65 CMSC 754



triangulation is kept in a global data structure. The edgebe following algorithm should be thought of as
pointers to an reasonable representation of the simptoialplex.

Randomized Incremental Delaunay Triangulation Algorithm

Insertp) {
Find the triangleA\abc containingp;

Insert edgega, pb, andpc into triangulation;
SwapTestb); Il checkf/fix the surrounding edges
SwapTestfc);
SwapTest{a);
}

SwapTesigb) {
if (ab is an edge on the exterior face) return;
Let d be the vertex to the right of edag#;

if (inCircle(p, a, b, d) { Il d violates the incircle test
Flip edgeab for pd;
SwaptTest{d); Il check/fix the new suspect edges
SwaptTest(d);

}

As you can see, the algorithm is very simple. There are ontydlgments that have not been shown are the
implementation. The first is the update operations on the staticture for the simplicial complex. These can be
done inO(1) time each on any reasonable representation. The otherissk@ating the triangle that contains
p. We will discuss this below.

Correctness: There is one major issue in establishing the correctnedseddigorithm. When we performed empty-
circle tests, we only tested the empty circle tests for thvelyereated triangles containing the sjteand then
only for sites that lay on the opposite side of an edge of each Biangle.

This is related to an important issue in Delaunay triangotat We say that a triangulationlcally Delaunay

if for each triangle the vertices lying on the opposite sifleach edge of the (up to) three neighboring triangles
satisfy the empty-circle condition. But to establish coetplcorrectness of the triangulation, we need to show
that the triangulation iglobally Delaunay meaning that empty-circle condition is satisfied for adngles, and

all points of P. That is, it suffices to show that if a triangulation is logdllelaunay, then it is globally Delaunay.
This important theorem (callddelaunay’s Theorejnand we will sketch a proof of this theorem below for this
special context.

First, to see that it suffices to consider only triangles #inatincident tg, observe thap is the only newly added
site, and hence it is the only site that can cause a violafitimoempty-circle condition.

To finish the argument, it suffices to see why “locally Delaginianplies “globally Delaunay.” Consider a
triangle Apab that containg and consider the vertekbelonging to the triangle that lies on the opposite side of
edgeab. We argue that ifl lies outside the circumcircle @b, then no other point of the point set can lie within
this circumcircle. A complete proof of this takes some dffbut here is a simple justification. What could go
wrong? It might be thad lies outside the circumcircle, but there is some other sig, a vertex of a triangle
adjacent tal, that lies inside the circumcircle (see Fig. 59). We claiat this cannot happen. It can be shown
that if ¢ lies within the circumcircle ofApab, thena must lie within the circumcircle of\bde. (The argument is

a exercise in the geometry of circles.) However, this wouddate the assumption that the initial triangulation
(before the insertion gf) was a Delaunay triangulation.

Point Location: The point location can be accomplished by one of two meanstetidiscusses the idea of building
a history graph point-location data structure, just as wkimlithe trapezoid map case. A simpler approach is
based on the idea of maintaining the uninserted sites in af $®tckets Think of each triangle of the current

Lecture Notes 66 CMSC 754



if e violates the circumcircle condition for Apab
then a violates the condition with respect to Abde.

Fig. 59: Proof of sufficiency of testing neighboring sites.

triangulation as &ucketthat holds the sites that lie within this triangle and havetgée inserted. Whenever
an edge is flipped, or when a triangle is split into three tgias through point insertion, some old triangles are
destroyed and are replaced by a constant number of newleganyhen this happens, we lump together all the
sites in the buckets corresponding to the deleted triangteate new buckets for the newly created triangles,
and reassign each site into its new bucket. Since there ayastamt number of triangles created, this process
requiresO(1) time per site that is rebucketed.

To analyze the expected running time of algorithm we needtob two quantities: (1) how many structural
changes are made in the triangulation on average with thid@ddf each new site, and (2) how much effort is
spent in rebucketing sites. As usual, our analysis will bia@éworst-case (for any point set) but averaged over
all possible insertion orders.

Structural Changes: We argue first that the expected number of edge changes weithiresertion i<D(1) by a simple
application of backwards analysis. First observe thaufagsy general position) the structure of the Delaunay
triangulation is independent of the insertion order of tivessso far. Thus, any of the existing sites is equally
likely to have been the last site to be added to the structure.

Suppose that some sitewas the last to have been added. How much work was neededetd pisObserve
that the initial insertion op involved the creation of three new edges, all incident.télso, whenever an edge
swap is performed, a new edge is addegd.t®hese are the only changes that the insertion algorithnmzedee.
Therefore the total number of changes made in the triarigaldor the insertion ofp is proportional to the
degree o after the insertion is complete. Thus the work needed to ins&tproportional top’s degree after
the insertion.

insert p

Fig. 60: Number of structural changes is equab'todegree after insertion (three initial edges and three éidggs).

To perform the backwards analysis, we consider the sitnatfter the insertion of théth site. Since the dia-
gram’s structure does not depend on the order of inserti@my@ne of the sites appearing in the diagram was
equally likely to be the last one added. Thus, by a backwand$ysis, the expected time to insert thl site

is equal to the average degree of a vertex in the triangulatio sites. (The only exception are the three initial
vertices at infinity, which must be the first sites to be irset

By Euler’'s formula we know that the average degree of a varnteny planar graph is at most 6. (Recall that
a planar graph with vertices can have at mo3t edges, and the sum of vertex degrees is equal to twice the
number of edges, which is at mdgt.) Thus, irrespective of the stage number, the expected aupftedge
changes is proportional to the expected vertex degreehwhi©(1). Summing over alh insertions, the total

Lecture Notes 67 CMSC 754



number of structural changes(n). Recall that each structural change (new edges and edgedéipsbe
performed inO(1) time.

Rebucketing: Next we argue that the total expected time spent in rebugggmints isO(n logn). From this it will
follow that the overall expected running time is dominatgdh®e rebucketing process, and s@i&:logn).

To do this, we will show that the expected number of times &mt site is rebucketed (as to which triangle it
lies in) isO(logn). Again this is done by a standard application of backwaradyais. Let us fix a sitg € P.
Consider the situation just after the insertion of ithesite. If¢ has already been inserted, then it is not involved
in the rebucketing process, so let us assumectlnas not yet been inserted. As above we make use of the fact
that any of the existing sites is equally likely to be the kit inserted.

We assert that the probability thatvas rebucketed as a result of the last insertion is at ByostTo see this,

let A be the triangle containingafter theith insertion. As observed above, after we insertithesite all of the
newly created triangles are now incident to this new sfiewould have come into existence as a result of the
last insertion if and only one of its three vertices was tls 1a be added (see Fig. 61). Sinéses incident to
exactly three sites, and every site is equally likely to beldst inserted, it follows that the probability that
came into existence $/i. (We are cheating a bit here by ignoring the three initisssit infinity.) Thus, the
probability thaty required rebucketing after the last insertion is at n3gst

q would have been rebucketed
only if one of a, b, or ¢ was the
last to be inserted

Fig. 61: Probability of rebucketing.

After stagei there aren — ¢ points that might be subject to rebucketing, and each hasapility 3/: of being
rebucketed. Thus, the expected number of points that receliucketing as part of the last insertiofvis-7)3 /1.

By the linearity of expectation, to obtain the total numbérebucketings, we sum these up over all stages,
yielding

3 ~ 3 "1
—(n—1) < -n =3 - = 3nl O(1
;Z(n 1) < ;Zn n;Z nlnn + O(1),
(where as usual we have applied the bound on the HarmoniesgerfThus, the total expected time spent in
rebucketing iD(nlogn), as desired.

There is one place in the proof that we were sloppy. (Can yotisp) We showed that the number of points
that required rebucketing i®(n logn), but notice that when a point is inserted, each rebucketéut pray
change buckets many times (one for the initial insertion@melfor each additional edge flip). We will not give
a careful analysis of the total number of individual rebutigoperations per point, but it is not hard to show
that the expected total number of individual rebucketingrafions will not be larger by more than a constant
factor. The reason is that (as argued above) each new msenly results in a constant number of edge flips,
and hence the number of individual rebucketings per inmeii§ also a constant. But a careful proof should
consider this. Such a proof is given in our textbook.

Lecture 14: Line Arrangements and the Zone Theorem
Line Arrangements: So far we have studied a few of the most important structuresomputational geometry:

convex hulls, Voronoi diagrams and Delaunay triangulatiorhe next most important structure is that diha
arrangement

Lecture Notes 68 CMSC 754



Consider a finite set of lines in the plané? These lines naturally subdivide the plane into a cell compldich

is called thearrangemenbf L, and is denotedi(L) (see Fig. 62(a)). The points where two lines intersect form
the vertices of the complex, the segments between two cotigedintersection points form its edges, and the
polygonal regions between the lines form the faces. Althoaig arrangement contains unbounded edges and
faces, as we did with Voronoi diagrams (from a purely topaalperspective) it is possible to add a vertex
at infinity and attach all these edges to this vertex to fornrapgr planar graph. An arrangement can be
represented using any standard data structure for cellleses a DCEL for example.

vertex B ﬂ )
(a) (b)

Fig. 62: Arrangement of lines; (a) the basic elements of amngement and (b) adding a vertex at infinity to form a
proper planar graph.

As we shall see, arrangements have many applications inuatignal geometry. Through the use of point-
line duality, many of these applications involve sets ofp&i We will begin by discussing the basic geometric
and combinatorial properties of arrangements and an #hgorior constructing them. Later we will discuss

applications of arrangements to other problems in comjauatgeometry.

Combinatorial Properties: The combinatorial complexitpf an arrangement is the total number of vertices, edges,
and faces in the arrangement. An arrangement is said $oviigeif no three lines intersect at a common point.
Through our usual general position assumption that no tlimes intersect in a single point, it follows that
all our arrangements are simple. The following lemma shdwas all of these quantities af(n?) for simple
planar line arrangements.

Lemma: Let. A(L) be a simple arrangement oflines L in the plan. Then:
(i) the number of vertices (not counting the vertex at infinit A(L) is (5)

(ii) the number of edges il (L) is n?
(iii) the number of faces ipA(L)is (5) +n+1

Proof: The fact that the number of vertices(ig) is clear from the fact that each pair of lines intersects in a
single point.
To prove that the number of edgesri$, we use induction. The basis case is trivial (one line and one
edge). When we add a new line to an arrangement-efl lines (having(n — 1)? edges by the induction
hypothesis) we split. — 1 existing edges, thus creatimg— 1 new edges, and we addnew edges from
then — 1 intersections with the new line. This gives a totalof— 1) + (n — 1) + n = n?.
The number of faces follows from Euler’s formuta;- ¢ + f = 2. To form a cell complex, recall that we
added an additional vertex at infinity. Thus, we have 1 + (}) ande = n?. Therefore, the number of
faces is

f

2-vte =2 (1+(3)+n? = 2 (142070 4 p2

1+2+2 =1+2080 4 = () +n+1,

as desired.

B3In general, it is possible to define arrangementdrby considering a finite collection ¢fl — 1)-dimensional hyperplanes. In such a case the
arrangement is a polyhedral cell complex that subdiviiés

Lecture Notes 69 CMSC 754



By the way, this generalizes to higher dimensions as welé ddmbinatorial complexity of an arrangement of
n hyperplanes iR is ©(n?). Thus, these structures are only practical in spaces dfveialow dimension
whenn is not too large.

Incremental Construction: Arrangements are used for solving many problems in comipatEtgeometry. But in
order to use an arrangement, we first must be able to constrifctWe will present a simple incremental
algorithm, which builds an arrangement by adding lines dreetame. Unlike the other incremental algorithms
we have seen so far, this onenist randomizedits worst-case asymptotic running time, whicttién?), holds
irrespective of the insertion order. This is asymptoticalbtimal, since this is the size of the arrangement. The
algorithm will also requireD(n?) space, since this is the amount of storage needed to stofiadheesult.

Let L = {¢1,4s,...,¢,} denote the set of lines. We will add lines one by one and upttiteesulting ar-
rangement, and we will show that tix¢h line can be inserted i@ (i) time (irrespective of the insertion order).
Summing ovet, 1 < i < n, yieldsO(n?) total time.

Suppose that the firgt— 1 lines have already been inserted, and consider the protasdsling?;. We start by
determining the leftmost (unbounded) face of the arrangeént@t contains this line. Observe thatrat= o,
the lines are sorted from top to bottom in increasing ordéneif slopes. Ir0(n) time, we can determine where
the slope o¥; falls in this order, and this determines the leftmost facthefarrangement that contains this line.

The newly inserted line cuts through a sequence-ofl edges and faces of the existing arrangement. In order
to process the insertion, we need to determine which edgesuaby/;, and then we split each such edge and
update the DCEL for the arrangement accordingly.

In order to determine which edges are cuttbywe “walk” this line through the current arrangement, froneo
face to the next. Whenever we enter a face, we need to detethmmegh which edgé; exits this face. We
answer the question by a very simple strategy. We walk albagetiges of the face, say in a counterclockwise
direction until we find the exit edge, that is, the other edg# £; intersects. We then jump to the face on the
other side of this edge and continue the trace with the neigindp face. This is illustrated in Fig. 63(a). (The
DCEL data structure supports such local traversals in tingal in the number of edges traversed.)

Fig. 63: Adding the lin¢; to the arrangement; (a) traversing the arrangement anti€k@ane of a lin¢;. (Note that
only a portion of the zone is shown in the figure.)

Clearly, the time that it takes to perform the insertion isgartional to the total number of edges that have been
traversed in this tracing process. A naive argument sayswh@ncountei — 1 lines, and hence pass through
faces (assuming general position). Since each face is ledunygat most lines, each facial traversal will take
O(i) time, and this gives a tot#l(i?). Hey, what went wrong? Above we said that we would do thi®{n)
time. The claim is that the traversal does indeed traverie @) edges, but to understand why, we need to
delve more deeply into a concept otaneof an arrangement.

Zone Theorem: The most important combinatorial property of arrangemeéntsch is critical to their efficient con-
struction) is a rather surprising result called #ome theoremGiven an arrangement of a setl of n lines, and
given a line/ that is not inL, thezoneof ¢ in A(¢), denoted? 4(¢), is the set of faces whose closure intersects

14This is not quite accurate. For some applications, it suffoggerform a plane-sweep of the arrangement. If we think ohédiae as an
infinitely long line segment, the line segment intersectiggodthm that was presented in class leads tadmn? logn) time andO(n) space
solution. There exists a special version of plane sweepléorap line arrangements, callempological plane sweepvhich runs inO(n?) time and
O(n) space.

Lecture Notes 70 CMSC 754



£. (Fig. 63(b) illustrates a zone for the lidg For the purposes of the above construction, we are ordyasted
in the edges of the zone that lie beldyy but if we bound the total complexity of the zone, then thif e an
upper bound on the number of edges traversed in the aboveétalgoThe combinatorial complexity of a zone
(as argued above) is at ma3tn?). The Zone theorem states that the complexity is actuallymsacaller, only
O(n).

Theorem: (Zone Theorem)Given an arrangememd(L) of n lines in the plane, and given any liden the
plane, the total number of edges in all the cells of the Z6ré() is at mostn.

Proof: As with most combinatorial proofs, the key is to organizergthéng so that the counting can be done
in an easy way. Note that this is not trivial, because it iy¢asee that any one line @ might contribute
many segments to the zonefThe key in the proof is finding a way to add up the edges so Hudt kne
appears to induce only a constant number of edges into thee zon
The proof is based on a simple inductive argument. For the s&llustration, let us assume théis
horizontal. By general position, we may assume that nonbefibhes ofL is parallel to/. We split the
edges of the zone into two groups, those that bound some rfacethe left side and those that bound
some face from the right side. More formally, since each faawnvex, if we split it at its topmost and
bottommost vertices, we get two convex chains of edgeslditbounding edgeare on the left chain and
theright-bounding edgeare on the right chain. We will show that there are at n3aslines that bound
faces from the left (see Fig. 64(a)). A symmetrical argunagplies to the right-bounding edges. (Note
that an edge of the zone that crosééself contributes only twice to the complexity of the zonace as a
left-bounding edge and once as a right-bounding edge. Toledproof counts each such edge four times
because it distinguishes not only left and right, but it dsiseparately the part of the edge that lies above
¢ from the part that lies belo Thus, they obtain a higher bound&i. Note that we ignore the edges of
the bounding box.)

For the base case, when= 1, then there is exactly one left bounding edge’s1zone, andl < 3n.
Assume that the hypothesis is true for any set efl lines. Consider the rightmost line of the arrangement
to intersect. Call this¢;. (Selecting this particular line is very important for thegf.) Suppose that
we consider the arrangement of the other 1 lines. By the induction hypothesis there will be at most
3(n — 1) left-bounding edges in the zone fér

Z5 .

(a) (b)
Fig. 64: Proof of the Zone Theorem.

Now let us add back; and see how many more left-bounding edges result. Congdidaightmost face

of the arrangement af — 1 lines. (Shaded in Fig. 64(b).) Note that all of its edges afedounding
edges. Line; intersectd within this face. By convexity/; intersects the boundary of this face in two
edges, denoted, ande;,, wheree,, is abovel ¢, is below. The insertion of; creates a new left bounding
edge alond; itself, and splits the left bounding edgesande; into two new left bounding edges for a
net increase of three edges. Observe thatannot contribute any other left-bounding edges to the ,zone
because (depending on slope) either the line suppoetiray the line supporting;, blocks/;’s visibility

Lecture Notes 71 CMSC 754



from £. (Note that it might provide right-bounding edges, but we a0t counting them here.) Thus, the
total number of left-bounding edges on the zone is at BpEst- 1) + 3 < 3n, and hence the total number
of edges is at mogtn, as desired.

Lecture 15: Applications of Arrangements

Applications of Arrangements and Duality: Last time we introduced the concept of an arrangement of iim¢he
plane, and we showed how to construct such an arrangem@itit) time. Line arrangements, when combined
with the dual transformation, make it possible to solve a benof geometric computational problems. A
number of examples are given below. Unless otherwise stalittiese problems can be solved(rin?) time
andO(n?) space by constructing a line arrangement. Alternately, tae be solved i) (n? log n) time and
O(n) space by applying plane sweep to the arrangement.

General position test: Given a set of: points in the plane, determine whether any three are calline

Minimum area triangle: Given a set ofn points in the plane, determine the minimum area trianglesgho
vertices are selected from these points.

Minimum Ek-corridor: Given a set of: points, and an integdr, determine the narrowest pair of parallel lines
that enclose at leatpoints of the set. The distance between the lines can be deditieer as the vertical
distance between the lines or the perpendicular distarteeeba the lines (see Fig. 65(a)).

Visibility graph: Given line segments in the plane, we say that two pointwviaibleif the interior of the line
segment joining them intersects none of the segments. @ivaat ofn non-intersecting line segments,
compute thevisibility graph whose vertices are the endpoints of the segments, and welgss a pairs of
visible endpoints (see Fig. 65(b)).

k-corridor (k = 11) | Visibility Graph | Max Stabbing Line | Ham-Sandwich Cut

~
/

VAN

(b) (c) (d)

Fig. 65: Applications of arrangements.

Maximum stabbing line: Given a set of: line segments in the plane, compute the linbat stabs (intersects)
the maximum number of these line segments (see Fig. 65(c)).

Ham Sandwich Cut: Givenn red points andn blue points, find a single liné that simultaneously bisects
these point sets. Itis a famous fact from mathematics,c¢flieHam-Sandwich Theorerthat such a line
always exists. If the two point sets are separable by a I {, the red convex hull and the blue convex
hull do not intersect), then this can be solved in tithg: + m) (see Fig. 65(d)).

In the remainder of the lecture, we'll see how problems Iiese can be solved through the use of arrangements.

Sweeping Arrangements: Since an arrangement of lines is of size©(n?), we cannot expect to solve problems
through the explicit use of arrangements in less than qtiadime. Most applications involve first constructing
the arrangement, and then traversing it in some manner. hy inatances, the most natural traversal to use is

Lecture Notes 72 CMSC 754



based on a plane-sweep. (This is not the only way howeveceSirplanar arrangement is a graph, methods
such as depth-first and breadth-first search can be used.)

If an arrangement is to be built just so it can be swept, theybegou don’t need to construct the arrangement
at all. You can just perform the plane sweep on the lines,tgxas we did for the line segment intersection
algorithm. Assuming that we are sweeping from left to righe initial position of the sweep line is at= —co
(which means sorting by slope). The sweep line status magtiae lines in, say, bottom to top order according
to their intersection with the sweep line. The events areséindces of the arrangement.

Note that the sweep-line status always contains exactntries. Whenever an intersection event occurs, all
that happens is that two line exchange positions within tatis. Thus, rather than using a general ordered
dictionary (e.g., binary search tree) for the sweep-liag¢ust, it suffices to store the lines in a simplelement
array, sorted from bottom to top, say.

Sweeping an arrangement in this manner takés? logn) time, andO(n) space. Because it is more space-
efficient, this is often an attractive alternative to comsting the entire subdivision.

There is a somewhat more “relaxed” version of plane sweehaliorks for line arrangements in the plane.
(It does not apply to arbitrary line segments.) It is callegological plane sweepyou arenot responsible for
knowing how this algorithm works. It runs i?(n?) time (thus, eliminating a log factor) and us@én) space.
Although I will not present any justification of this, it is plicable to all the problems we will discuss in today’s
lecture.

Sorting all angular sequences:Here is a natural application of duality and arrangemergsttirns out to be impor-
tant for the problem of computing visibility graphs. Coreic set of: points in the plane. For each pojntn
this set we want to perform an angular sweep, say in countkwalise order, visiting the other — 1 points of
the set. For each point, it is possible to compute the anglegden this point and the remaining— 1 points
and then sort these angles. This would téKe log n) time per point, and(n? logn) time overall.

With arrangements we can speed this ui@?) total time, getting rid of the extr&@(logn) factor. Here is
how. Recall the point-line dual transformation. The duahgintp = (a, b) is the linep* : y = ax — b. The
dual of alinef : y = ax — b is the pointt* = (a,b). Recall thap lies above’ (by distancey) if and only if p*

lies below?¢* (also by distancé).

Suppose that is the point around which we want to sort, and{et, . . ., p,,) be the points in final angular order
aboutp (see Fig. 66(a)). Consider the arrangement defined by thdidesp;. How does this order manifest
itself in the arrangement?

() (b)

Fig. 66: Arrangements and angular sequences.

Consider the dual ling*, and its intersection points with each of the dual lip¢s These form a sequence
of vertices in the arrangement alopty Consider this sequence ordered from left to right. It wduddnice if

this order were the desired circular order, but this is nateqeorrect. It follows from the definition of our dual
transformation that the-coordinate of each of these vertices in the dual arrangeis#ére slope of some line of

Lecture Notes 73 CMSC 754



the formpp; in the primal plane. Thus, the sequence in which the vertapgear on the line isslope ordering
of the points aboup;, not anangular ordering

However, given this slope ordering, we can simply test wigdmal points lie to the left op (that is, have a
smallerz-coordinate in the primal plane), and separate them fronpthets that lie to the right op (having

a largerz-coordinate). We partition the vertices into two sortedusetpes, and then concatenate these two
sequences, with the points on the right side first, and thetponi the left side later. The resulting is an angular
sequence starting with the angl®0 degrees and proceeding upt@70 degrees.

Thus, once the arrangement has been constructed, we carstrecd each of the angular orderings(tin)
time, for a total ofO(n?) time. (Since the output size {3(n?), there no real benefit to be achieved by using
plane sweep.)

Narrowest k-corridor: As mentioned above, in this problem we are given af3ef n points in the plane, and an
integerk, 1 < k < n, and we wish to determine the narrowest pair of paralleklitiat enclose at leaktpoints
of the set. In this case we will define the vertical distandsvben the lines as the distance to minimize. (Itis
not difficult to adapt the algorithm for perpendicular dista.)

To simplify the presentation, we assume that 3. (The generalization to generalis an exercise.) We will
make the usual general position assumptions that no thrie¢spaf P are collinear and no two points have
the samer-coordinate. This implies that the narrowest corridor aorg exactly three points and has strictly
positive height.

If we dualize the points o, then in dual space we have a #ebf n lines, {¢1,s...,¢,}. The slope of each
dual-line is thex-coordinate of the corresponding point Bf and itsy-intercept is the negation of the point's
y-coordinate.

A narrowest 3-corridor in the primal plane consists of twogtlal lines/, and/, in primal space (see Fig. 67(a)).
Their duals;, and/; are dual points, which have the sameoordinates (since the lines are parallel), and the
vertical distance between these points, is the differenabe y-intercepts of the two primal lines. Thus the
height of the corridor, is the vertical length of the line sent.

In the primal plane, there are exactly three points lyindidorridor, that is, there are three points that are both
above/;, and below?,. Thus, by the order reversing property, in the dual planerettare three dual lines that
pass both below poirtf; and above’;. Combining all these observations it follows that the deafrfulation of

the narrowest 3-corridor problem is the following (see Big(b)):

Shortest vertical 3-stabber: Given an arrangement of lines, determine the shortest vertical segment that
stabs three lines of the arrangement.

Dual
(a) (b)

Fig. 67: A 3-corridor in the (a) primal and (b) dual form. (dhat the corridor is not as narrow as possible.)

Primal

It is easy to show (by a simple perturbation argument) thatstiortest vertical 3-stabber may be assumed to
have one of its endpoints on a vertex of the arrangementyingpthat the other endpoint lies on the line of the
arrangement lying immediately above or below this vertéx tife primal plane the significance is that we can

Lecture Notes 74 CMSC 754



assume that the minimum 3-corridor one of the lines passesdh 2 of the points, and the other passes through
a third point, and there are no points within the interiorka torridor.

We can compute the minimum 3-stabber in an arrangement, ioypdesplane sweep of the arrangement (using
a vertical sweep line). Whenever we encounter a vertex ofria@gement, we consider the distance to the edge
of the arrangement lying immediately above this vertex &ecedge lying immediately below (see Fig. 68). We
can solve this problem by plane sweegifn? log n) time andO(n) space. (By using topological plane sweep,
the extralog n factor can be removed.)

Fig. 68: The critical line segments used in computing theaveest 3-corridor.

Halfplane Discrepancy: Next we consider a problem derived from computer graphicssampling. Suppose that
we are given a collection of points P lying in a unit squard/ = [0,1]2. We want to use these points for
random sampling purposes. In particular, the propertywheatvould like these points to have is that for any
halfplaneh, we would like the size of the fraction of points Bfthat lie withinh should be roughly equal to the
area of intersection df with U. That is, if we defing:(h) to be the area ok N U, andup(h) = |P N A|/|P|,
then we would likeu(h) =~ pp(h) for all h. This property is important when point sets are used forghiike
sampling and Monte-Carlo integration.

To this end, we define thdiscrepancyof P with respect to a halfplankto be
Ap(h) = |u(h) — pp(h)].

For example, in Fig. 69(a), the areafoin U is pu(h) = 0.625, and there are 7 out of 13 points in thus
up(h) = 7/13 = 0.538. Thus, the discrepancy df is [0.625 — 0.538] = 0.087. Define thehalfplane
discrepancyof P to be the maximum (or more properly the supremum, or leastiubpund) of this quantity
over all halfplanes:

A(P) = 51}1p Ap(h).

y L
. . /“\‘/h
. A
/ . . : )
(a) (b)

Fig. 69: Discrepancy of a point set.

Lecture Notes 75 CMSC 754



Since there are an uncountably infinite number of halfplaités important to derive some sort fifiiteness
criterion on the set of halfplanes that might produce the greatestegiaacy.

Lemma: Leth denote the halfplane that generates the maximum discrgpaticrespect taP, and let/ denote
the line that boundé. Then either (i) passes through at least two pointsigfor (i) ¢ passes through
one point of P, and this point is the midpoint of the line segmént U

Remark: If a line passes through one or more pointsitf then should this point be included e (h)?
For the purposes of computing the maximum discrepancy, tisever is to either include or omit the
point, whichever will generate the larger discrepancy. jUséification is that it is possible to perturb
infinitesimally so that it includes none or all of these psinithout alteringu(h).

Proof: If ¢ does not pass through any point®f then (depending on which is largeth) or up(h)) we can
move the line up or down without changing-(h) and increasing or decreasipgh) to increase their
difference. If¢ passes through a poipte P, but is not the midpoint of the line segmeht U, then we
claim that we can rotate this line abquand hence increase or decreagg) without alteringup(h), to
increase their difference.

To establish the claim, consider Fig. 69(b). Suppose tlealitle ¢ passes through poiptand letr; < 79
denote the two lengths aloridrom p to the sides of the square. Observe that if we rotalbeough a small
angled, then to a first order approximation, the gain due to areaefrtangle on the right is?6/2, since
this triangle can be approximated by an angular sector ofcéecdf radiusr; and angle). The loss due

to the area of the triangle on the leftri$f/2. Thus, since:; < ry this rotation will decrease the area of
region lying belowh infinitesimally. A rotation in the opposite increases thegainfinitesimally. Since the
number of points bounded Bydoes not change as a functionfyfthe discrepancy cannot be achieved as
long as such a rotation is possible.

Call the lines satisfying (i) atype-land the lines satisfying (ii) agpe-2 We will show that the discrepancy for
each set of lines can be computedin?) time.

Since for each point € P there are only a constant number of lile@t most two, | think) through this point
such thap is the midpoint o N U, it follows that there are at moéi(n) type-1 lines, and hence the discrepancy
of all of these lines can be tested by brute forc®im?) time.

Type-2 Discrepancies and LevelsComputing the discrepancies of the type-2 lines will inesdrrangements. In the
primal plane, a lin¢ that passes through two poinis p; € P, is mapped in the dual plane to a potitat
which the linesp; andpj intersect. This is just a vertex in the arrangement of thé ks for P. So, if we
have computed the arrangement, then all we need to do isiteaih vertex and compute the discrepancy for
the corresponding primal line.

It is easy to see that the aréa U of each corresponding line in the primal plane can be conapuite (1)
time. So, all that is needed is to compute the number of paiht8 lying below ¢, for £'s lower halfspace,
and the number of points lying above it, féis upper halfspace. (As indicated in the above remark, we tak
the two points lying orf as being above or below, whichever makes the discrepanbghjgn the dual plane,
this corresponds to determining the number of dual lines lthaabove each vertex in the arrangement and
the number of lines that lie below it. If we know the number ofalllines that lie above each vertex in the
arrangement, then it is trivial to compute the number ofditiet lie below by subtraction.

In order to count the number of lines lying above/below aesedf the arrangement, it will be useful to the
notion of a level in an arrangements. We say that a pointlevatk, denoted’y, in an arrangement if there are
at mostk — 1 lines above this point and at mast- k lines below this point. Thé&-th level of an arrangement

is anz-monotone polygonal curve (see Fig. 70(a)). For exampke ugiper envelope of the lines is level 1 of
the arrangement, and the lower envelope is leveNote that (assuming general position) each vertex of the
arrangement is generally on two levels. (Beware: Our dedmibf level is exactly one greater than our text’s
definition.)

Lecture Notes 76 CMSC 754



(a) (b)

Fig. 70: Examples of levels in an arrangement.

We claim that it is an easy matter to compute the level of eactex of the arrangement (e.g., by plane sweep).
The initial levels atc = —oco are determined by the slope order of the lines. Whenever wesaxer a vertex,
we swap the level numbers associated with the two lines (ge&®b)).

Thus, by using plane sweep,@(n? log n) time andO(n) space, we can determine the minimum and maximum
level number of each vertex in the arrangement. From ther oedersing property, for each vertex of the dual
arrangement, the minimum level number minus one indicasatamber of primal points that lie strictly below
the corresponding primal line and the maximum level numb#re number of primal points that lie on or below
this line. Thus, given the level numbers and the fact thaasacan be computed (1) time, we can compute
the discrepancies of all the type-2 lines@in? log n) time andO(n) space, through plane sweep. (Through
the use of topological plane sweep, the extra factdogf. can be eliminated.)

Lecture 16: Orthogonal Range Searching and kd-Trees

Geometric Retrieval: We will shift our focus from algorithm problems to data stures for the next few lectures.

We will consider the following class of problems. Given aleclion of objects, preprocess them (storing the
results in a data structure of some variety) so that quefies garticular form can be answered efficiently.
Generally we measure data structures in terms of two qigsjtihe time needed to answer a query and the
amount of space needed by the data structure. Often thetteaideaoff between these two quantities, but most
of the structures that we will be interested in will have eitlinear or near linear space. Preprocessing time is an
issue of secondary importance, but most of the algorithmsiteonsider will have either linear aP(n logn)
preprocessing time.

In the next couple of lectures, we will considathogonal rectangular range querigthat is, ranges defined by
rectangles whose sides are aligned with the coordinate &x@s of the nice things about rectangular ranges is
that they can be decomposed into a collection of 1-dimeasssarches.

Range Queries: In arange queriesve are given a seP of points and regiord in space (e.g., a rectangle, polygon,

halfspace, or disk) and are asked to provide some informathmut the points of lying within Q. Examples
of the types of information include the following:

Range reporting: Return a list of all the points aP that lie within@Q

Range counting: Return a count of all the points @ that lie within@. There are a number of variations.

Weights: Each pointp € P is associated with a numeric weightp). Return the sum of weights of the
points of P lying within @

Lecture Notes 77 CMSC 754



Semigroup weights: The weights need not be numbers and the operation need ndtibea. In general,
the weights ofP are drawn from any commutative semigroup. A commutativeigemap is pair
(X, 0), whereX is a set, and : ¥ x ¥ — ¥ is a commutative and associative binary operatoFon
The objective is to return the “sum” of the weights of the ederts of P N Q, where %” takes the role
of addition.
For example, if we wanted to compute the maximum weight oft @keeal values, we could use the
semigroup(R, max). If we wanted to know the parity of the number of pointsiin Q, we could
take the semigrouf{0, 1}, @), where®d denotes exclusive-or (or equivalently, addition modulo 2)

Group weights: A group is a special case of a semigroup, where inverses ¢kist example, the semi-
group of reals under additiofR, +) is a group (where subtraction plays the role of inverse) tieit
semigroup(R, max) is nota group (since the max operator does not have inverses).
If it is known that the semigroup is, in fact, a group, the dsttacture may take advantage of this to
speed-up query processing. For example, the query progeakjorithm has the flexibility to both
“add” and “subtract” weights.

To achieve the best possible performance, range searchtagtiuctures are tailored to the particular type of
query ranges and the properties of the semigroup involvedth® other hand, a user may prefer to sacrifice
efficiency for a data structure that is more general and cawana wide variety of range searching problems.

Range Spaces and VC-DimensionAn important concept underlying geometric range searchinbat the subsets
that can be formed by simple geometric ranges (such as gdetardiscs, triangles, half-spaces) are typically
much more restrictive than the set of all possible subsédighwis called thgpower setof P.

We can characterize any range search problem abstractiyllawd. A range spaceds defined to be a pair
(X, R) whereX is an arbitrary set an® is a subset of the power set &f. For example X might be the real
2-dimensional plane ari@ might be the set of all closed, bounded triangles. Given &sgtX, define

x(P) = {PNQ|Q € R}.

That is,IIz (P) is the collection of subsets d? that can be formed by intersectirg with the ranges of the
range space.

For example consider the range space consisting of axalplarectangles ifR2. Fig. 71 illustrates a number
of the subsets aP that constitutdIz (P). Note that not all subsets @f are inIlz (P). For example, the sets
{1,4} and{1, 2,4} cannot be formed by intersectirgwith axis-parallel rectangular ranges.

{1’2} {2;4} p(P) = {@7

P > {1}, {2}, {3}, {4},
A - el {1,2},{1,3},{2,3},{2,4}, {3, 4},
3¢ RENIEE R {1,2,3},{1,3,4},{2,3,4},
-4 - o4 {1,2,3,4} }
{374} \

Cannot generate {1,4} without including 3

Fig. 71: A 4-point set and the range space of axis-paralt#bregles. Note that sefd, 4} and{1, 2,4} cannot be
generated.

Suppose that we are given a $ebf n points in the plane an® consists of axis parallel rectangles. How large
might IIz (P) be? If we take any axis-parallel rectangle that encloseessuhset ofP, and we shrink it as
much as possible without altering the points containedinjittve see that such a rectangle is determined by
four points of P, that is, the points that lie on the rectangle’s top, botttaft, and right sides. It is easy to see,
therefore, that, for this particular range space, we iayéP) = O(n?).

Lecture Notes 78 CMSC 754



How complex is an arbitrary range space? A useful conceptesbtion ofVC dimensionwhich is short
for Vapnik-Chervonenkis dimensiéh Given an arbitrary range spa¢&’, R) and point set?, we say thaiR
shattersP is Iz (P) is equal to the power set @, that is, we can form any of th”’! subsets of? by taking
intersections with the ranges &. For example, the point set shown in Fig. 7Inist shattered by the range
space of axis-parallel rectangles. However, the four-etgmpoint setP’ shown in Fig. 72 is shattered by this
range space.

, Mg (P") = {0,
P, . {1}, {2}, {3}, {4},
a0 g (1,2}, {1,3}, {1,4}, {2,3}, {2, 4}, {3, 4},
o4 4 {1,2,3},{1,2,4},{1,3,4}, {2, 3,4},
3o 3o {1,2,3,4} }

Fig. 72: A 4-point set that is shattered by the range spaceisfparallel rectangles. (We show only the 2-element
point sets in the drawing.)

The VC-dimensiorof a range spaceX, R) is defined to be the size of thargestpoint set that is shattered by
the range space. In Fig. 72 we have shown that the four-elepoémt setP’ is shattered by the range space of
axis-parallel rectangles. It is not hard to show, howeveat ho 5-element point set &? can be shattered by
this same range space. (We will leave this as an exerciselefidre, the VC-dimension of the range space of
2-dimensional axis-parallel rectangles is four.

The VC-dimension of a range space provides useful infolonats to the complexity of answering range queries
for such a space. An important result in this are@@ier's Lemmawhich states that, ifX,R) has VC
dimensiond, then|Ilz (P)| = O(n?), wheren = |P|. This is consistent with the observation that we made
earlier for the case of axis-parallel rectangles.

Canonical Subsets: A common approach used in solving almost all range querigsrispresenf’ as a collection of
canonical subsetéP;, P, ..., P}, eachP;, C P (wherek is generally a function of. and the type of ranges),
such that any set can be formed as the disjoint union of caabsiubsets. Note that these subsets may generally
overlap each other.

There are many ways to select canonical subsets, and theechiffécts the space and time complexities. For
example, the canonical subsets might be chosen to consistinfleton sets, each of the forp; }. This would

be very space efficient, since we need ofljn) total space to store all the canonical subsets, but in ooder t
answer a query involving objects we would neef sets. (This might not be bad for reporting queries, but it
would be too long for counting queries.) At the other extreme might let the canonical subsets be all the sets
of the range spacR. Thus, any query could be answered with a single canonidset(assuming we could
determine which one), but we would ha)®| different canonical subsets to store, which is typicallyighbr
ordered polynomial im, and may be too high to be of practical value. The goal of a gande data structure

is to strike a balance between the total number of canoniteleds (space) and the number of canonical subsets
needed to answer a query (time).

Perhaps the most common way in which to define canonical ®ilssthrough the use of partition tree A
partition tree is a rooted (typically binary) tree, whosajes correspond to the points®f Each node: of such
a tree is naturally associated with a subsePphamely, the points stored in the leaves of the subtree daaite
u. We will see an example of this when we discuss one-dimeakirange queries.

One-dimensional range queries:Before we consider how to solve general range queries, lebasider how to
answer 1-dimension range queries,imterval queries Let us assume that we are given a set of poitts

15The concept of VC-dimension was first developed in the fieldrobpbility theory in the 1970’s. The topic was discovereti¢éovery relevant
to the fields of machine learning and computational geometrgtén1980’s.

Lecture Notes 79 CMSC 754



{p1,p2,...,pn} ON the line, which we will preprocess into a data structureeri, given an intervdlz;,, xp;],
the goal is to count or report all the points lying within timeirval. Ideally, we would like to answer counting
queries inO(logn) time, and we would like to answer reporting queries in titglog n) + k) time, wherek

is the number of points reported.

Clearly one way to do this is to simply sort the points, andwpmary search to find the first point @f that is
greater than or equal to,,, and less than or equal 19,;, and then enumerate (or count) all the points between.
This works fine in dimension 1, but does not generalize rgadiany higher dimensions. Also, it does not work
when dealing with the weighted version, unless the weigtgsleawn from a group.

Let us consider a different approach, which will generatizehigher dimensions. Sort the points Bfin
increasing order and store them in the leaves of a balancedybsearch tree. Each internal node of the tree
is labeled with the largest key appearing in its left childe an associate each node of this tree (implicitly
or explicitly) with the subset of points stored in the leatleat are descendants of this node. This gives rise
to the O(n) canonical subsetsin order to answer reporting queries, the canonical ssl@hot need to be
stored explicitly with each node of the tree. The reasonaswe can enumerate each canonical subset in time
proportional to its size by simply traversing the subtred egporting the points lying in its leaves. This is
illustrated in Fig. 73. For range counting, we associaté eacle with the total weight of points in its subtree.

Fig. 73: Canonical sets for interval queries. For rangentamn canonical subsets are generated as needed by travers
ing the subtree.

We claim that the canonical subsets corresponding to argeraan be identified i®(logn) time from this
structure. Given any intervét,,, x;], we search the tree to find the rightmost leafhose key is less than,

and the leftmost leaf whose key is greater thar),;. (To make this possible for all ranges, we could add two
sentinel points with values of co and+oo to form the leftmost and rightmost leaves.) Clearly all thavies
betweenu andwv constitute the points that lie within the range. To form theanonical subsets, we take the
subsets of all thenaximal subtreelying between the paths from the rootandv.

Here is how to compute these subtrees. The search pattemitv may generally share some common subpath,
starting at the root of the tree. Once the paths diverge, dolegv the left path tou, whenever the path goes to
the left child of some node, we add the canonical subset etedavith its right child. Similarly, as we follow
the right path ta), whenever the path goes to the right child, we add the caabsibset associated with its left
child.

As mentioned earlier, to answer a range reporting query mplgitraverse the canonical subtrees, reporting the
points of their leaves. To answer a range counting query werré¢he sum of weights associated with the nodes
of the canonical subtrees.

Since the search pathsdaandv are each of lengtty(log n), it follows thatO(log n) canonical subsets suffice
to represent the answer to any query. Thus range countingequean be answered iD(logn) time. For
reporting queries, since the leaves of each subtree carsted Iin time that is proportional to the number of
leaves in the tree (a basic fact about binary trees), itfalthat the total time in the search@¥(logn) + k),
wherek is the number of points reported.

In summary, 1-dimensional range queries can be answer@dlig ) (counting) or((logn) + k) (reporting)
time, usingO(n) storage. This concept of finding maximal subtrees that antagred within the range is

Lecture Notes 80 CMSC 754



fundamental to all range search data structures. The omlgtiqun is how to organize the tree and how to locate
the desired sets. Let see next how can we extend this to hijihensional range queries.

Kd-trees: The natural question is how to extend 1-dimensional rangecheg to higher dimensions. First we will
consider kd-trees. This data structure is easy to impleredtquite practical and useful for many different
types of searching problems (nearest neighbor searchingxomple). However it is not the asymptotically
most efficient solution for the orthogonal range searchasgye will see later.

Our terminology is a bit nonstandard. The data structuredeassgned by Jon Bentley. In his notation, these
were called %-d trees,” short for k-dimensional trees”. The valuewas the dimension, and thus there are 2-d
trees, 3-d trees, and so on. However, over time, the speaifie wfk was lost. Our text uses the term “kd-tree”
rather than &-d tree.” By the way, there are many variants of the kd-treecept. We will describe the most
commonly used one, which is quite similar to Bentley’s araidesign. In our trees, points will be stored only
at the leaves. There are variants in which points are stdrietieanal nodes as well.

A kd-tree is an example of a partition tree. For each node, wbeligide space either by splitting along the
z-coordinates or along thgcoordinates of the points. Each internal nead the kd-tree is associated with the
following guantities:

t.cut-dim the cutting dimension (e.gr,= 0 andy = 1)
t.cut-val the cutting value (a real number)
t.weight the number (or generally, total weight) of pointstis subtree

In dimensiond, the cutting dimension may be represented as in integeingifiggm O tod — 1. If the cutting
dimension ig, then all points whoséh coordinate is less than or equalktout-valare stored in the left subtree
and the remaining points are stored in the right subtreee g 74.) If a point’s coordinate is equal to the
cutting value, then we may allow the point to be stored oregitfide. This is done to allow us to balance the
number of points in the left and right subtrees if there areyregual coordinate values. When a single point
remains (or more generally a small constant humber of points store it in a leaf node, whose only field
t.pointis this point.

Ps, « D10

b2

bg

py, [P0

Fig. 74: A kd-tree and the associated spatial subdivision.

The cutting process has a geometric interpretation. Eadh obthe tree is associated implicitly with a rectan-
gular region of space, calledczll. (In general these rectangles may be unbounded, but in npglications

it is common to restrict ourselves to some bounded rectangegion of space before splitting begins, and so
all these rectangles are bounded.) The cells are neste@ isetiise that a child’s cell is contained within its

parent’s cell. Hence, these cells defingierarchical decompositionf space. This is illustrated on the left side

of Fig. 74.

There are two key decisions in the design of the tree.

How is the cutting dimension chosen?The simplest method is to cycle through the dimensions onenlgy
(This method is shown in Fig. 74.) Since the cutting dimemsiepends only on the level of a node in the

Lecture Notes 81 CMSC 754



tree, one advantage of this rule is that the cutting dimensi&ed not be stored explicitly in each node,
instead we keep track of it while traversing the tree.

One disadvantage of this splitting rule is that, dependimghe data distribution, this simple cyclic rule
may produce very skinny (elongated) cells, and such cellg adwersely affect query times. Another
method is to select the cutting dimension to be the one aldmnighathe points have the greategtread
defined to be the difference between the largest and smedlestinates. Bentley call the resulting tree an
optimized kd-tree

How is the cutting value chosen?To guarantee that the tree has hei@titog n), the best method is to let the
cutting value be the median coordinate along the cuttingedsion. If there is an even number of points in
the subtree, we may take either the upper or lower medianeanay simply take the midpoint between
these two points. In our example, when there are an odd nuafilpaints, the median is associated with
the left (or lower) subtree.

A kd-tree is a special case of a more general class of hidgcalckpatial subdivisions, callebinary space
partition trees(or BSP treelin which the splitting lines (or hyperplanes in general)ynhe oriented in any
direction.

Constructing the kd-tree: It is possible to build a kd-tree i@(n log n) time by a simple top-down recursive proce-
dure. The most costly step of the process is determining #tian coordinate for splitting purposes. One way
to do this is to maintain two lists of pointers to the pointsesorted by:-coordinate and the other containing
pointers to the points sorted according to theiroordinates. (In dimensio#, d such arrays would be main-
tained.) Using these two lists, it is an easy matter to finchtkedian at each step in constant time. In linear time
it is possible to split each list about this median element.

For example, ift = s is the cutting value, then all points wifh). < s go into one list and those with, > s
go into the other. (In dimensiodthis generally take®(d) time per point.) This leads to a recurrence of the
form T'(n) = 2T (n/2) 4+ n, which solves taD(nlogn). Since there are leaves and each internal node has
two children, it follows that the number of internal nodesis 1. Hence the total space requirements@te).

Theorem: Givenn points, itis possible to build a kd-tree of heightlog n) and spac@(n) in time O(n logn)
time.

Range Searching in kd-trees:Let us consider how to answer orthogonal range countingiegieRange reporting
queries are an easy extension. Kgtlenote the desired range, andlenote the current node in the kd-tree.
We assume that each nodeds associated with its rectangular cell, denotecell. (Alternately, this can be
computed on the fly, as the algorithm is running.) The sedgirithm is presented in the code block below.

kd-tree Range Counting Query

int range-count(Rang@, KDNodewu)
(1) if (uis aleaf)
(a) if (u.pointe Q) returnu.weight
(b) else return Q'« or generally, the semigroup identity elemerit
(2) else/x wisinternal«/

(a) if (u.celln @ = 0) return 0/x* the query does not overlags cell x/
(b) else if @.cell C Q) returnu.weight/x u’s cell is contained within query rangeg/
(c) else, return range-coyd, u.left) 4+ range-coun(, u.right).

The search algorithm traverses the tree recursively. Ifrives at a leaf cell, we check to see whether the
associated pointy.point, lies within @ in O(1) time, and if so we count it. Otherwise,is an internal node.

If u.cellis disjoint from@ (which can be tested i®(1) time since both are rectangles), then we know that
no point in the subtree rooted atis in the query range, and so there is nothing to count..déll is entirely
contained within@ (again testable i©(1) time), then every point in the subtree rooteduatan be counted.

Lecture Notes 82 CMSC 754



(These points constitute a canonical subset.) Otherwisegll partially overlaps). In this case we recurse on
u’s two children and update the count accordingly.

Fig. 75 shows an example of a range search. Blue shaded noafefbate to the search result and red shaded
nodes do not. The red shaded subtrees are not visited. Teesblded subtrees are not visited for the sake of
counting queries. Instead, we just access their total weigh

O included
Q O excluded

oC

Fig. 75: Range search in a kd-tree. (Note: This particutss trvas not generated by the algorithm described above.)

Analysis of query time: How many nodes does this method visit altogether? We claanh ttie total number of
nodes isD(y/n) assuming a balanced kd-tree. Rather than counting visddds) we will count nodes that are
expandedWe say that a node is expanded if it is visited and both itklcdm are visited by the recursive range
count algorithm.

A node is expanded if and only if the cell overlaps the rang@avit being contained within the range. We say
that such a cell istabbedby the query. To bound the total number of nodes that are ebquhim the search, it
suffices to bound the number of nodes whose cells are stabbed.

Lemma: Given a balanced kd-tree with points using the alternating splitting rule, any verticahorizontal
line stabsO(y/n) cells of the tree.

Proof: Let us consider the case of a vertical line= zy. The horizontal case is symmetrical.

Consider an expanded node which has a cutting dimensiog alofhe vertical linex = z, either stabs
the left child or the right child but not both. If it fails toah one of the children, then it cannot stab any of
the cells belonging to the descendents of this child eitti¢he cutting dimension is along thgaxis (or
generally any other axis in higher dimensions), then thedia= 2 stabs both children’s cells.

Since we alternate splitting on left and right, this meara #fter descending two levels in the tree, we
may stab at most two of the possible four grandchildren ohewstle. In general each time we descend
two more levels we double the number of nodes being stabbkds, Wwe stab the root node, at most 2
nodes at level 2 of the tree, at most 4 nodes at level 4, 8 nadiegsh6, and generally at mogt nodes at
level 2i. Each time we descend a level of the tree, the number of pfailtiésby half. Thus, each time we
descend two levels of the tree, the number of points fallsrgy/fourth.

This can be expressed more formally as the following recuee LetT'(n) denote the number of nodes
stabbed for a subtree containingoints. We have

2 if n <4,
T(n) < { 1427 (%) otherwise.

We can solve this recurrence by appealing to the Master ¢hedor solving recurrences, as presented

in the book by Cormen, Leiserson, Rivest and Stein. To keepeitture self-contained, let's solve it by
repeated expansion.

Lecture Notes 83 CMSC 754



T(n) < 1427 (ﬁ)

rea(re () - oo ()

< (1+2>+4<1+2T<”/416)> = (1244 +87 (57)
< L.

< Srerr(y)

1=0

To get to the basis cas@'(1)) let's setk = log, n, which means that* = n. Observe thap!°s:" =
2(log2n)/2 — n1/2 — | /n. SinceT'(1) < 2, we have

T(n) < (2'°8a™ —1) 4 2°8"T(1) < 3y/n = O(Vn).
This completes the proof.

We have shown that any vertical or horizontal line can stdp 61\/n) cells of the tree. Thus, if we were to
extend the four sides @ into lines, the total number of cells stabbed by all thesedliis at mosO(4/n) =
O(y/n). Thus the total number of cells stabbed by the query rang¥{gn). Since we only make recursive
calls when a cell is stabbed, it follows that the total numifeexpanded nodes by the searchi&,/n), and
hence the total number of visited nodes is larger by just ateon factor.

Theorem: Given a balanced kd-tree with points, orthogonal range counting queries can be answered i
O(y/n) time and reporting queries can be answere®{R/n + k) time. The data structure uses space
O(n).

Lecture 17: Orthogonal Range Trees

Orthogonal Range Trees: Last time we saw that kd-trees could be used to answer ortfabgange queries in the
plane inO(y/n) time for counting and)(y/n + k) time for reporting. It is natural to wonder whether we can
replace theD(,/n) term with something closer to the ideal query timeiflog n). Today we consider a data
structure, which is more highly tuned to this particulartpgemn, called amrthogonal range treeRecall that we
are given a seP of n points inR?, and our objective is to preprocess these points so thangiay axis-parallel
rectanglel), we can count or report the points Bfthat lie withinQ efficiently.

An orthogonal range tree is a data structure which, in thaeplssesD(nlogn) space and can answer range
reporting queries i (log n + k) time, wherek is the number of points reported. In general in dimension 2,

it usesO(n log(d‘l) n) space, and can answer orthogonal rectangular range qi:eﬁ)ésag(d‘l) n + k) time.
The preprocessing time is the same as the space bound. Weresknt the data structure in two parts, the
first is a version that can answer querieiflog” n) time in the plane, and then we will show how to improve
this in order to strip off a factor dbg n from the query time. The generalization to higher dimersiaiil be
straightforward.

Multi-level Search Trees: The orthogonal range-tree data structure is a nice exanfpenwore general concept,
called amulti-level search tree In this method, a complex search is decomposed into a gunstenber of
simpler range searches. Recall that a range space is &aR) consisting of a se and a collectioriR
of subsets ofX, calledranges Given a range spadeX, R), suppose that we can decompose it into two (or
generally a small number of) range subspdcésR ) and(X, R2) such thatany querg € R can be expressed
asQ; NQ., for Q; € R;. (For example, an orthogonal range query in the plang, xx:] X [yi0, yni], €aN be

Lecture Notes 84 CMSC 754



expressed as the intersection of a vertical strip and adwatstrip, in particular, the points whosecoordinates

are in the rang€); = [x;,, zx;] X R and the points whosg-coordinates are in the rang® = R X [yi0, Ynil.)

The idea is to then “cascade” a number of search structunesfan each range subspace, together to answer a
range query for the original space.

Let’s see how to build such a structure for a given pointRBetVe first construct an appropriate range search
structure, say, a partition tree, fét for the first range subspaceX, R;). Let's call this treel” (see Fig. 76).
Recall that each node € T is implicitly associated with @anonical subsebf points of P, which we will
denote byP,. In the case thdlf’ is a partition tree, this is just the set of points lying in thaves of the subtree
rooted atu. (For example, in Fig. 76P,, = {ps,...,ps}.) For each node € T, we construct amuxiliary
search tredor the points ofP,, but now over thesecondrange subspadeX, R»). Let T, denote the resulting
tree (see Fig. 76). The final data structure consists of tinegpy treeT’, the auxiliary search trees, for each

u € T, and a link from each node € T to the corresponding auxiliary search tfEBg The total space is the
sum of space requirements for the primary tree and all thianyxtrees.

/\ /\ {p17 'ap4}
?v”{pl,pz} {P:s pay Tug
S B {p1....,ps}

{ps5,06} {p7,p8} {ps,---,p8}

Auxiliary search trees

Fig. 76: Multi-level search trees.

Now, given a query rang® = Q1 N Q2, whereQ; € R;, we answer queries as follows. Recall from our earlier
lecture that, the partition tréE allows us to express the answer to the quBry (), as a disjoint uniot J,, P,

for an appropriate (and ideally small) subset of nodes T'. Call this subset/(Q;). In order to complete
the query, for each € U(Q1), we access the corresponding auxiliary searchiem order to determine the
subset of point$, that lie within the query rang@-. To see why this works, observe that

PNQ = (PNQ1)NQ2 = U P, NQx = U P,NQo

ueU(Q1) uelU(Q1)

Therefore, once we have computed the answers to all theimyxiangesP, N Q. for all u € U(Q,), all
that remains is to combine the results (e.g., by summingahats or concatenating all the lists, depending on
whether we are counting or reporting, respectively). Thergtime is equal to the sum of the query times over
all the trees that were accessed.

A Multi-Level Approach to Orthogonal Range Searching: Now, let us consider how to apply the abstract frame-
work of a multi-level search tree to the problem of 2-dimensi orthogonal range queries. First, we assume
that we have preprocessed the data by building a range tréeeféirst range query, which in this case is just a
1-dimensional range tree for thecoordinates. Recall that this is just a balanced binag/freshose leaves are
the points ofP sorted byz-coordinate. Each nodeof this binary tree is implicitly associated with a canothica

Lecture Notes 85 CMSC 754



subsetP, C P consisting of the points lying within the leavesiifs subtree. Next, for each nodec T, we
build a 1-dimensional range tree f&y,, sorted this time by-coordinates. The resulting tree is callEgl

The final data structure, called?adimensional range treeonsists of two levels: am-range treel’, where each
nodew € T points to auxiliaryy-range search treég,. (For d-dimensional range trees, we will havdevels of
trees, one for each coordinate.)

Queries are answered as follows. Consider an orthogongérqueryQ = [z, Thi] X [Yio, Yni]- LELQ1 =
[Z10, Thi] x RandQa = R X [y10, yni]- First, we queryl’ to determine the subsét(Q,) of O(logn) nodes

u such thatUueU(Ql) P, forms a disjoint cover of the points d? whosez-coordinate lies withifz;,, 2]
(These are the roots of the shaded subtrees in the top hal§o¥F¥) For eachu € U(Q:), we access the
auxiliary treeT;,, and perform a 1-dimensional range search (basagaordinates) to determine the subset of
P, that lies within@-, that is, the points whosgcoordinates lie withify,,, y:] (see Fig.77).

z-range tree

y-range tree
storing points of P,

Ty

Fig. 77: Orthogonal range tree search.

What is the query time? Recall that it tak@¢log n) time to locate the nodes representing the canonical subsets
for the 1-dimensional range query over theoordinates, and there afglogn) nodesu € U(Q;). For each
such node, we invoke a 1-dimensional range search ovej-tlo@rdinates on the canonical subggt which

will result in the generation oD (log |P,|) < O(logn) canonical sets. Thus, (ignoring constant factors) the
total number of canonical subsets accessed by the algoisthm

Z log |P,| < |U(Q1)]-logn < log®n.
uGU(Q1)

As before, listing the elements of these sets can be pertbrmadditionalO(k) time by just traversing the
subtrees corresponding to the canonical subsets of théizaydearch trees that contribute the final result.
Counting queries can be answered by precomputing the subizes for each node of each auxiliary search
tree, and just adding up all those that contribute to theyquEnerefore, reporting queries can be answered in
O((log® n) + k) time and counting queries can be answered{ibg” n) time. It is easy to see that we can
generalize this to orthogonal range searchingfrby cascading levels of 1-dimensional search trees. The log
factor in the resulting query time would beg? .

Space and Preprocessing TimeTo derive a bound on the total space used, we sum the sizektbhédtees. The
primary search tre& for the z-coordinates requires oni§(n) storage. For each node € T, the size of
the auxiliary search tre€, is clearly proportional to the number of points in this tredjch is the size of the

Lecture Notes 86 CMSC 754



associated canonical subsét, |. Thus, up to constant factors, the total space is

n+ Y|P

ueT

To bound the size of the sum, observe that each poiiit appears in the se®, for each ancestor of this leaf.
Since the tred” is balanced, its depth i©(logn), and therefore, each point &f appears irO(logn) of the
canonical subsets. Since each of thpoints of P contributesO(logn) to the sum, it follows that the sum is
O(nlogn).

In summary, the space required by the orthogonal range 2r€@¢rilogn). Observe that for the purposes of
reporting, we could have represented each auxiliary sdésgeff, as an array containing the points@f sorted
by the y-coordinates. The advantage of using a tree structure fdtth@akes it possible to answer counting
queries over general semigroups, and it makes efficienttioseand deletion possible as well.

We claim that it is possible to construct a 2-dimensionageatree inO(nlogn) time. Constructing the 1-
dimensional range tree for thecoordinates is easy to do (n(n log n) time. However, we need to be careful in
constructing the auxiliary trees, because if we were toesrh list ofy-coordinates separately, the running time
would beO(nlog?n). Instead, the trick is to construct the auxiliary trees irottdm-up manner. The leaves,
which contain a single point are trivially sorted. Then wegly merge the two sorted lists for each child to
form the sorted list for the parent. Since sorted lists cambeged in linear time, the set of all auxiliary trees
can be constructed in time that is linear in their total sjmze) (n log n). Once the lists have been sorted, then
building a tree from the sorted list can be done in linear time

Improved Query Times through Fractional Cascading: Can we improve on th@(log? n) query time? We would
like to reduce the query time 1©©(log n). (In general, this approach will shave a factoi@$ n from the query
time, which will lead to a query time C[T)(logd_l n) in RY).

What is the source of the extra log factor? As we descend thetstteez-interval tree, for each node we visit,
we need to search the corresponding auxiliary search tsssllzm the query’g-coordinatesy;,, yn:]. Itis this
combination that leads to the squaring of the logarithmsvefcould search each auxiliary (1) time, then
we could eliminate this annoying log factor.

There is a clever trick that can be used to eliminate the maait log factor. Observe that we are repeatedly
searching different lists (in particular, these are subskthe canonical subsel, for v € U(Q1)) but always
with thesamesearch keys (in particulay;, andy;,;). How can we exploit the fact that the search keys are static
to improve the running times of the individual searches?

The idea to rely on economies of scale. Suppose that we mitge different lists that we need to search into
a single master list. Sindd,, P, = P and|P| = n, we can search this master list for any keylflogn) time.
We would like to exploit the idea that, if we know wheyg andy;,; lie within the master list, then it should be
easy to determine where they are located in any canonicaksiip C P. Ideally, after making one search in
the master list, we would like to be able to answer all the iamg searches ii¥(1) time each. Turning this
intuition into an algorithm is not difficult, but it is not trial either.

In our case, the master list on which we will do the initialrebds the entire set of points, sorteddrgoordinate.
We will assume that each of the auxiliary search trees istadarray. (In dimensiod, this assumption implies
that we can apply this only to the last level of the multi-ledata structure.) Call these thexiliary lists

Here is how we do this. Let be an arbitrary internal node in the range tree-a@oordinates, and let andv”
be its left and right children. Lefl be the sorted auxiliary list for and letA’ and A” be the sorted auxiliary
lists for its respective children. Observe théts the disjoint union ofd’ and A” (assuming no duplicatg-
coordinates). For each elementdnwe store two pointers, one to the item of equal or largerevaiud’ and the
other to the item of equal or larger valuedf. (If there is no larger item, the pointer is null.) Observatthnce
we know the position of an item id, then we can determine its position in eith&ror A” in O(1) additional
time.

Here is a quick illustration of the general idea. betenote a node of the-tree, and let’ andv” denote its left
and right children. Suppose that (in increasing ordeg-obordinates) the associated nodes within this range

Lecture Notes 87 CMSC 754



are: {(p1, p2, ps, P4, Ps, P ), and suppose that isl we store the pointép,, p4, ps) and inv” we store(py, ps, pe)
(see Fig. 78(a)). For each point in the auxiliary list fgrve store a pointer to the list$ andv”, to the position
this element would be inserted in the other list (assumimgeddyy-values). That is, we store a pointer to the
largest element whoggvalue is less than or equal to this point (see Fig. 78(b)).

o o pe

o5

P4| oP3
.p2 cpl

(a)

Fig. 78: Cascaded search in range trees.

At the root of the tree, we need to perform a binary searchagall they-values to determine which points lie
within this interval, for all subsequent levels, once wewnehere they-interval falls with respect to the order
points here, we can drop down to the next leveQifi) time. Thus, the running time i@(log n), rather than
O(log*n). By applying this to the last level of the auxiliary searctustures, we save one log factor, which
gives us the following result.

Theorem: Given a set of: points inR?, orthogonal rectangular range queries can be answe(éﬁdug(d*” n+
k) time, from a data structure of spadén log'® ) n) which can be constructed ®(n log“~" n) time.

This technique is special case of a more general data stesdiechnique callefilactional cascadingThe idea
is that information about the search the results “cascaesi one level of the data structure down to the next.

The result can be applied to range counting queries as wéllutder the provision that we can answer the
queries using a sorted array representation for the lagt &d\the tree. For example, if the weights are drawn
from a group, then the method is applicable, but if the thegivsi are from a general semigroup, it is not
possible. (For general semigroups, we need to sum the sdsulindividual subtrees, which implies that we

need a tree structure, rather than a simple array strugture.

Lecture 18: Well Separated Pair Decompositions

Approximation Algorithms in Computational Geometry: Although we have seen many efficient techniques for
solving fundamental problems in computational geomelrgreé are many problems for which the complexity
of finding an exact solution is unacceptably high. Geometpproximation arises as a useful alternative in
such cases. Approximations arise in a number of contexte. i©when solving a hard optimization problem.
A famous example is thEuclidean traveling salesman problem which the objective is to find a minimum
length path that visits each afgiven points (see Fig. 79(a)). (This is an NP-hard problem there exists a
polynomial time algorithm that achieves an approximatietdr of1 + « for anye > 0.) Another source arises
when approximating geometric structures. For exampldy dasis semester we mentioned that the convex hull
of n points inR< could have combinatorial complexify(n'%/2]). Rather than computing the exact convex hull,
it may be satisfactory to compute a convex polytope, whichrhach lower complexity, and whose boundary is
within a small distance from the actual hull (see Fig. 79(b)).

Another important motivations for geometric approximatidgs that geometric inputs are typically the results of
sensed measurements, which are subject to limited praciSioere is no good reason to solve a problem to a
degree of accuracy that exceeds the precision of the inpemsgelves.

Lecture Notes 88 CMSC 754



P — - s S -
. i .
. FR }
o o o [ o o &
. . ‘ ] ¢
. . . o . . .
. ‘... 4

(a) (b)

Fig. 79: Geometric approximations: (a) Euclidean traygBalesman, (b) approximate convex hull.

Motivation: The n-Body Problem: We begin our discussion of approximation algorithms in getsyrwith a simple
and powerful example. To motivate this example, considexptication in physics involving the simulation of
the motions of a large collection of bodies (e.g., planettans) subject to their own mutual gravitational forces.
In physics, such a simulation is often called théody problem Exact analytical solutions are known to exist
in only extremely small special cases. Even determiningagmumerical solution is relative costly. In order
to determine the motion of a single object in the simulativa need to know the gravitational force induced by
the othem — 1 bodies of the system. In order to compute this force, it waelem that at a minimum we would
needQ(n) computations per point, for a total 6f(n?) total computations. The question is whether there is a
way to do this faster?

What we seek is a structure that allows us to encode the destafrmation ofQ2(n?) pairs in a structure of
size onlyO(n). While this may seem to be an impossible task, a clever appidi®i answer to this question
was discovered by Greengard and Rokhlin in the mid 1980 famms the basis of a technique called thst
multipole methotf (or FMM for short). We will not discuss the FMM, since it woulake us out of the way,
but will instead discuss the geometric structure that eesaduch of the information that made the FMM such
a popular technique.

Well Separated Pairs: A set ofn points in space defines a set(df) = ©(n?) distinct pairs. To see how to encode
this set approximately, let us return briefly to thebody problem. Suppose that we wish to determine the
gravitational effect of a large number of stars in a one gataxthe stars of distant galaxy. Assuming that the
two galaxies are far enough away from each other relatived tespective sizes, the individual influences of
the bodies in each galaxy can be aggregated into a singlécphysrce. If there arei; andns points in the
respective galaxies, the interactions due taalin, pairs can be well approximated by a singigeraction pair
involving the centers of the two galaxies.

To make this more precise, assume that we are givem-@lement point seP in R%, and a separation factor
s > 0. We say that two disjoint sets of and B are s-well separatedf the the setsd and B can be enclosed
within two Euclidean balls of radius such that the closest distance between these balls is &tslegsee
Fig. 80).

Observe that if a pair of points iswell separated, it is alsg-well separated for ab’ < s. Of course, since any
point lies within a (degenerate) ball of radius 0, it follothsit a pair of singleton set§{a}, {b}}, fora # b, is
well-separated for any > 0.

Well Separated Pair Decomposition: Okay, distant galaxies are well separated, but if you wererganarbitrary
set ofn points inR? (which may not be as nicely clustered as the stars in galpaieba fixed separation factor
s > 0, can you concisely approximate Qg) pairs? We will show that such a decomposition exists, and its
size isO(n). The decomposition is calledveell separated pair decompositio®f course, we would expect the
complexity to depend osandd as well. The constant factor hidden by the asymptotic nagiows asO(s).

Let’'s make this more formal. Given arbitrary set®nd B, defineA ® B to be the set of all distinct (unordered)

16As an indication of how important this algorithm is, it wasidid among the top-10 algorithms of the 20th century, along gitleksort, the
fast fourier transform, and the simplex algorithm for lineesgramming.

Lecture Notes 89 CMSC 754



Fig. 80: A well separated pair with separation factor

pairs from these sets, that is
A®B = {{a,b}|a€ A, be B, a#b}.

Observe thatd ® A consists of all the(g') distinct pairs ofA. Given a point seP and separation facter> 0,
we define ars-well separated pair decompositiga-WSPD) to be a collection of pairs of subsetgfdenoted
{{AI; Bl}, {AQ, BQ}, ceey {A'nu Bm}}, such that

(1) A;,B;C P,for1 <i<m
(2 AiNB;=0,for1<i<m
R UL A4®B,=PaP

1=

(4) A; andB; ares-well separated, for <i < m

Conditions (1)—(3) assert we have a cover of all the unodpedrs of P, and (4) asserts that the pairs are well
separated. Although these conditions alone do not impliyeteary unordered pair fron? occurs in a unique
pair A; ® B;, our construction will have this further property. An exdeis shown in Fig. 81. (Although there
appears to be some sort of hierarchical structure here,thatghe pairs are not properly nested within one
another.)

28 pairs 12 well-separated pairs
Fig. 81: A point set and a well separated pair decompositosdéparation = 1.

Trivially, there exists a WSPD of siz@(n?) by setting the{ A;, B;} pairs to each of the distinct pair singletons
of P. Our goal is to show that, given arelement point seP in R? and anys > 0, there exists a-WSPD

of sizeO(n) (where the constant depends ©andd). Before doing this, we must make a brief digression to
discuss the quadtree data structure, on which our congtnustbased.

Quadtrees: A quadtreeis a hierarchical subdivision of space into regions, catletls that are hypercubes. The
decomposition begins by assuming that the point8 &6& within a bounding hypercube. For simplicity we may
assume thaP has been scaled and translated so it lies within the unitroybe|0, 1]<.

Lecture Notes 90 CMSC 754



The initial cell, associated with theot of the tree, is the unit hypercube. The following proceshéntrepeated
recursively. Consider any unprocessed cell and its agsocieodeu in the current tree. If this cell contains
either zero or one point aP, then this is declared a leaf node of the quadtree, and thdivisibn process
terminates for this cell. Otherwise, the cell is subdivid®ad 2¢ hypercubes whose side lengths are exactly half
that of the original hypercube. For each of theéeells we create a node of the tree, which is then made a child
of u in the quadtree. (The process is illustrated in Fig. 82. Tdiatp are shown in Fig. 82(a), the node structure
in Fig. 82(b), and the final tree in Fig. 82(c).)

*9 SW NW SE NE
b Toc L NW|NE
M

‘dH. SW|SE

(a) (b)
Fig. 82: The quadtree for a set of eight points.

Although in practice, quadtrees as described above tend tedsonably efficient in fairly small dimensions,
there are a number of important issues in their efficient @mgntation in the worst case. The first is that a
guadtree containing points may have many more thél{n) nodes. The reason is that, if a group of points are
extremely close to one another relative to their surrougglithere may be an arbitrarily lotigvial path in the

tree leading to this cluster, in which only one of ttfechildren of each node is an internal node (see Fig. 83(a)).
compress

.................. >

n =
(2) (b)

Fig. 83: Compressed quadtree: (a) The original quadtréafigr path compression.

This issue is easily remedied by a process cakith compressiarEvery such trivial path is compressed into a
single link. This link is labeled with the coordinates of $mallest quadtree box that contains the cluster (see
Fig. 83(b)). The resulting data structure is calletbanpressed quadtre®bserve that each internal node of the
resulting tree separates at least two points into separbteegs. Thus, there can be no more than1 internal
nodes, and hence the total number of node&3(is).

A second issue involves the efficient computation of the tread It is well known that the tree can be computed
in time O(hn), whereh is the height of the tree. However, even for a compressedtmeathe tree height can
be as high as, which would imply anO(n?) construction time. We will not discuss it here, but it can beven
that in any fixed dimension it is possible to construct thediigee of amm-element point set i@ (n log n) time.
(The key is handling uneven splits efficiently. Such splitsewhen one child contains almost all of the points,
and all the others contain only a small constant number.)

The key facts that we will use about quadtrees below are:

(a) Given am-element point seP in a space of fixed dimensiah a compressed quadtree Brof sizeO(n)
can be constructed i (n logn) time.

(b) Each internal node has a constant numbgy ¢hildren.

Lecture Notes 91 CMSC 754



(c) The cell associated with each node of the quadtreelidienensional hypercube, and as we descend from
the parent to a child (in the uncompressed quadtree), te€site length) of the cells decreases by a factor
of 2.

(d) The cells associated with any level of the tree (whemltreels are interpreted relative to the uncompressed
tree) are of the same size and all have pairwise disjointiors

An important consequence stemming from (c) and (d) is tHeahg lemma, which provides an upper bound
on the number of quadtree disjoint quadtree cells of sizeaat! that can overlap a ball of radius

Packing Lemma: Consider a balb of radiusr in any fixed dimensionl, and consider any collectioX of
pairwise disjoint quadtree cells of side lengths at leastat overlaph. Then

1X| < (1+ ﬁﬂ)d < O<max (2, ;)d)

Proof: We may assume that all the cells &fare of side length exactly equal 10 since making cells larger
only reduces the number of overlapping cells (see Fig. 84(b)

2r
<Ly Lol G
H
b b
(a) (b)

Fig. 84: Proof of the Packing Lemma.

By the nature of a quadtree decomposition, the cells of ®dgthxz form a hypercube grids of side
lengthz. Consider a hypercub& of side length2r that enclose$ (see Fig. 84). Clearly every cell of
X overlaps this hypercube. Along each dimension, the numbeelts of G that can overlap an interval
of side lengthr is at mostl + [2r/x]. Thus, the number of grid cubes @fthat overlapH is at most
(1+ [2r/x])%. If 2r < =, this quantity is at mos2?, and otherwise it i) ((r/z)%).

For the construction of the WSPD, we need to make a small augti@mto the quadtree structure. We wish
to associate each node of the tree, both leaves and intezdasnwith a point that lies within its cell (if such a
point exists). Given a node, we will call this pointu’s representativeand denote this asp(u). We do this
recursively as follows. It is a leaf node that contains a pomtthenrep(u) = {p}. If v is a leaf node that
contains no point, therep(u) = (. Otherwise, ifu is an internal node, then it must have at least one chiltht

is not an empty leaf. (If there are multiple nonempty chifdnee may select any one.) Sep(u) = rep(v).

Given a nodeu in the tree, letP, denote the points that lie within the subtree rooted.aiVe will assume that
each node: is associated with itievelin the tree, denotetbvel(u). Assuming that the original point set lies
within a unit hypercube, the side lengths of the cells arenefform1/2¢, for i > 0. We definelevel(u) to
be —log, z, wherez is the side length of’s cell. Thus,level(u) is just the depth of. in the (uncompressed)
guadtree, where the root has defitiThe key feature of level is th&tvel(u) < level(v) holds if and only if the
sidelength ofu’s cell at least as large as that@$ cell.

Constructing a WSPD: We now have the tools needed to to show that, givem-@ement point seP in R¢ and
anys > 0, there exists a-WSPD of sizeO(s%n), and furthermore, this WSPD can be computed in time that
is roughly proportional to its size. In particular, the ctsastion will take O(nlogn + sin) time. We will

Lecture Notes 92 CMSC 754



show that the final WSPD can be encodedifs?n) total space. Under the assumption thandd are fixed
(independent of.) then the space i©(n) and the construction time @(nlogn).

The construction operates as follows. Recall the condit{@n(4) given above for a WSPD. We will maintain
a collection of sets that satisfy properties (1) and (3),ibugeneral they may violate conditions (2) and (4),
since they may not be disjoint and may not be well separatedrvtiie algorithm terminates, all the pairs will
be well-separated, and this will imply that they are digjoiBach sef{ A;, B;} of the pair decomposition will
be encoded as a pair of nodfs, v} in the quadtree. Implicitly, this pair represents the palfs® P,, that is,
the set of pairs generated from all the points descended framd all the points descended fram This is
particularly nice, because it implies that the total steregguirement is proportional to the number of pairs in
the decomposition.

Fig. 85: WSPD recursive decomposition step.

The algorithm is based on a recursive subdivision processsi@er a pair of nodesu, v} that arise in the
decomposition process. First, let us assumedtsatell is least as large ass. That is,u’s level number is not
greater than’s. Consider the two smallest Euclidean balls of equal mthat enclose’s cell andv’s cell (see
Fig. 85(a)). If these balls are well separated, then we gaortéu, v} as (the encoding of) a well separated pair.
Otherwise, we subdivide by considering its children, and apply the procedure reeeissto the pairs{u;, v},

for each child ofu; of u (see Fig. 85(b)).

A more formal presentation of the algorithm is presentedhenfollowing code block. The procedure is called
ws-pairgu, v, s), whereu andv are the current nodes of a compressed quadtree for the gojrergls is the
separation factor. The procedure returns a set node paasdmg the well separated pairs of the WSPD. The
initial call is ws-pairgug, ug, s), whereu is the root of the compressed quadtree.

Construction of a Well Separated Pair Decomposition

ws-pairgu, v, s) {

if (rep(u) orrep(v) is empty return®; /I no pairs to report
else if (v andv ares-well separated I (see remark below)
return{{u,v}}; Il return the WSK P, P, }
else{ /I subdivide
if (level(u) > level(v)) swapu andv; // swap so that's cell is at least as large a%s
Letus,...,ur, denote the children af;
returnJ;~ , ws-pairgu;, v, s); Il recurse on children
}

How do we test whether two nodesandv ares well separated? For each internal node, consider the shalle
Euclidean balls enclosing the associated quadtree boxededr leaf node, consider a degenerate ball of radius
zero that contains the point. B(1) time, we can determine whether these ballssanell separated. Note that

a pair of leaf cells will always pass this test (since theuads zero), so the algorithm will eventually terminate.

Lecture Notes 93 CMSC 754



Note that, due to its symmetry, this procedure will gengnatbduce duplicate paifsP,,, P, } and{P,, P, }. A
simple disambiguation rule can be applied to eliminate drieem.

Analysis: How many pairs are generated by this recursive procedurefl gimplify our proof to assume that the
guadtree is not compressed (and yet it has 6ige)). This allows us to assume that the children of each node
all have cell sizes that are exactly half the size of theiepts cell. (We leave the general case as an exercise.)

From this assumption, it follows that whenever a call is mad@&s-pairs, the sizes of the cells of the two nodes
u andw differ by at most a factor of two (because we always split &nger of the two cells). It will also simplify
the proof to assume that> 1 (if not, replace all occurrences ebelow withmax(s, 1)).

To evaluate the number of well separated pairs, we will caalis to ws-pairs. We say that a call to ws-pairs
is terminal if it does not make it to the final “else” clause. Each termicall generates at most one new well
separated pair, and so it suffices to count the number of te@troalls to ws-pairs. In order to do this, we will
instead bound the number of nonterminal calls. Each nomtatroall generates at mogt recursive calls (and
this is the only way that terminal calls may arise). Thus,tttal number of well separated pairs is at m2st
times the number of nonterminal calls to ws-pairs.

To count the number of nonterminal calls to ws-pairs, we glply a charging argument to the nodes of the
compressed quadtree. Each time we make it to the final “elag’se and split the cell, we assign a charge
to the “unsplit” cellv. Recall thatu is generally the larger of the two, and thus the smaller nedeives the
charge. We assert that the total number of charges assigreety/tnodev is O(s?). Because there a@(n)
nodes in the quadtree, the total number of nonterminal eallbe O(s%n), as desired. Thus, to complete the
proof, it suffices to establish this assertion about thegihgrscheme.

A charge is assessed to nadenly if the call is nonterminal, which implies thatandv are nots-well separated.
Let z denote the side length ofs cell and letr, = xx/&/Q denote the radius of the ball enclosing this cell. As
mentioned earlier, because we are dealing with an uncosgateguadtree, and the construction always splits
the larger cell first, we may assume th&t cell has a side length of eitheror 2. Therefore, the ball enclosing
u's cell is of radiusr,, < 2r,. Sinceu andv are not well separated, it follows that the distance betvikeim
enclosing balls is at most- max(r,,r,) < 2sr, = szvd. The centers of their enclosing balls are therefore
within distance

1 .
Ty + Ty + szvd < <2 +1+ s> zvVd < 3sxVd (sinces > 1),

which we denote by, (see Fig. 86(a)).

/‘\bv

T Uy
R?)"’
\__/

Fig. 86: WSPD analysis.
Letb, be a Euclidean ball centeredwes cell of radiusR,,. Summarizing the above discussion, we know that the

set of quadtree nodesthat can assess a chargetbave cell sizes of either or 2z and overlap,,. Clearly the
cells of side lengthr are disjoint from one another and the cells of side lergtlare disjoint from one another.

Lecture Notes 94 CMSC 754



Thus, by the Packing Lemma, the total number of nodes thaassess a charge to nodé at mostC, where

(o D) (e [ ]) <20 ])

2 <1+ 6”‘/&}) < 2(1+6sVd)* < O(s%),

X
Putting this all together, we recall that there &¢én) nodes in the compressed quadtree ard?) charges
assigned to any node of the tree, which implies that there aogal of O(s%n) total nonterminal calls to ws-
pairs. As observed earlier, the total number of well separatirs is larger by a factor 6#(2¢), which is just
O(1) sinced is a constant. Together with thi&(n log n) time to build the quadtree, this gives an overall running
time of O((nlogn) + sn) andO(s%n) total well separated pairs. In summary we have the followésgilt.

c

IN

IN

as desired.

Theorem: Given a point seP in R?, and a fixed separation facter> 1, in O(n log n+sn) time it is possible
to build ans-WSPD for P consisting ofO(s%n) pairs.

As mentioned earlier, il < s < 1, then replace with max(s, 1). Next time we will consider applications of
WSPDs to solving a number of geometric approximation problem

Lecture 19: Applications of WSPDs

Review: Recall that given a parameter> 0, we say that two sets oA and B are s-well separatedf the sets can
be enclosed within two spheres of radiusuch that the closest distance between these spheres é&stirle
Given a point sef’ and separation facter > 0, recall that ans-well separated pair decompositigg-WSPD)
is a collection of pairs of subsets 6f{{ A1, B1}, {42, B2}, ..., {An, B, }} such that

(l) Az;Bz gP,fOflSZSm

(2) Aszl:(b,for]. <i<m

B UL, Ai®B,=P®P

(4) A; andB; ares-well separated, fot < i < m,

whereA @ B denotes the set of all unordered pairs frdnand B.

Last time we showed that, given> 2, there exists as-WSPD of sizeD(s?n), which can be constructed in time
O(nlogn+sn). (The algorithm works for any > 0, and thes? term is more accurately statediasx(2, s)?.)
The WSPD is represented as a set of unordered pairs of nodeoof@essed quadtree decompositioolt

is possible to associate each nonempty nodéthe compressed quadtree withepresentative poindenoted
rep(u), chosen from its descendants. We will make use of this fasbine of our constructions below.

Today we discuss a number of applications of WSPDs.

Approximating the Diameter: Recall that theliameterof a point set is defined to be the maximum distance between
any pair of points of the set. (For example, the poinendy in Fig. 87(a) define the diameter.)

The diameter can be computed exactly by brute foro@ (in?) time. For points in the plane, it is possible to
compute the diamet&rin O(nlogn) time. Generalizing this method to higher dimensions resalanO(n?)
running time, which is no better than brute force search.

Using the WSPD construction, we can easily compute-approximation to the diameter of a point getin
linear time. Givere, we lets = 4/¢ and construct ar-WSPD. As mentioned above, each pah,, P,) in
our WSPD construction consists of the points descended fnmmbdesy. andv, in a compressed quadtree.

7This is nontrivial, but is not much harder than a homework égerdn particular, observe that the diameter points mustrlithe convex hull.
After computing the hull, it is possible to perform a rotatswgeep that finds the diameter.

Lecture Notes 95 CMSC 754



Fig. 87: Approximating the diameter.

Let p, = rep(u) andp, = rep(v) denote the representative points associated wiindv, respectively. For
every well separated pa{iP,, P, }, we compute the distandl,.p, || between their representative, and return
the largest such distance.

To prove correctness, letandy be the points of that realize the diameter. L¢P, P, } be the well separated
pair containing these points, and et andp, denote their respective representatives. By definition elf w
separatedness, we know that and P, can be enclosed in balls of radiughat are separated by distance at
leastsr (see Fig. 87(b)). Therefore, by the triangle inequality \eeeh

eyl < lpupoll +2r +2r = [lpupy || + 4r.

Also, by the WSPD separation properties, we higwen, | > sr implying thatr < ||p,p,||/s. Combining these

we have
4
lzyll < llpupoll + 47 < llpupoll + —lIPupyll
4
= (145 ) Ipupoll = (1 +e)llpupsll;
Clearly, ||p.py|| < ||zyl||, and therefore we have
T
21 < ool < Yoyl

which implies that the output is arrapproximation. The running time is dominated by the sizéhefWSPD,
which isO(s?n) = O(n/e?). If we treate as a constant, this 8(n).

Closest Pair: The same sort of approach could be used to produceapproximation to the closest pair as well,
but surprisingly, there is a much better solution. If we wergeneralize the above algorithm, we would first
compute ars-WSPD for an appropriate value efand for each well separated pé#,, P, } we would compute
the distancé{p,,p. ||, wherep,, = rep(u) andp, = rep(v), and return the smallest such distance. As before, we
would like to argue that (assumings chosen properly) this will yield an approximation to thesest pair. It
is rather surprising to note that, éfis chosen carefully, this approach yields theactclosest pair, not just an
approximation.

To see why, consider a point sef letz andy be the closest pair of points and jgtandp, be the representatives
from their associated well separated pair. If it were thee¢hatr = p,, andy = p,, then the representative-
based distance would be exact. Suppose therefore that eitfep, or y # p,. But wait! If the separation

factor is high enough, this would imply that eithetp,, || < ||zy|| or ||yp.|| < ||zy]|. either of which contradicts
the fact thatc andy are the closest pair.

Lecture Notes 96 CMSC 754



To make this more formal, let us assume thaty } is the closest pair and that> 2. We know thatP, and P,
lie within balls of radiug- that are separated by a distance of at least 2r. If p,, # z, then we have

[puz|| < 2r < sr < |zyl],

yielding a contradiction. Therefoge, = rep(u) = x. By a symmetrical argument, = rep(v) = y. Since
the representative was chosen arbitrarily, it follows thatP, = {«} andP, = {y}. Therefore, the closest
representatives are in fact, thgactclosest pair.

Sinces can be chosen to be arbitrarily close to 2, the running tin@(islog n + 29n) = O(nlogn), since we
assume thaf is a constant. Although this is not a real improvement overexisting closest-pair algorithm, it
is interesting to note that there is yet another way to sdlisegroblem.

Spanner Graphs: Recall that a seP of n points inR? defines a complete weighted graph, called Euelidean
graph in which each point is a vertex, and every pair of verticesoisnected by an edge whose weight is the
Euclidean distance between these points. This gragérisemeaning that it ha®(n?) edges. It would be nice
to have asparsegraph having only)(n) edges that approximates the Euclidean graph in some sense.

One such notion is to approximate the distances (lengtheoghiortest path) between all pairs of vertices. A
subgraph of a graph that approximates all shortest patfalédaspanner In the geometric context, suppose
that we are given a sét and a parameter> 1, called thestretch factor We define a-spannerto be a weighted
graphG whose vertex set i® and, given any pair of points, y € P we have

lzyll < da(z,y) < t-|layl,
whereds(z, y) denotes the length of the shortest path betweandy in G.

WSPD-based Spanner Construction:Do sparse geometric spanners exist? Remarkably, we havallgclready
seen one. It can be proved that the planar Delaunay triatigiuia at-spanner, for somg wherel.5932 < t <
1.998. The tightest value of is not known'8

There are many different ways of building sparse spannese e will discuss a straightforward method based
on a WSPD of the point set. The idea is to create one edge fonvezlekeparated pair. More formally, suppose
that we are given a point sét and stretch factor > 1. We begin by computing a WSPD for an appropriate
separation factos depending on. (We will prove later that the separation value- 4(¢t+1)/(¢t— 1) will do the
job). For each well-separated p&iP,, P, } associated with the nodesandv of the quadtree, let, = rep(u)

and letp,, = rep(v). Add the undirected edgl.,, p, } to our graph. Le& be the resulting undirected weighted
graph (see Fig. 88). We claim thatis the desired spanner. Clearly the number of edgés sfequal to the
number of well-separated pairs, which(§s?n), and can be built in the san@(n logn + s%n) running time

as the WSPD construction.

Correctness: To establish the correctness of our spanner constructgmridim, it suffices to show that for all pairs
z,y € P, we have
lzyl < da(z,y) < t-|zyl.
Clearly, the firstinequality holds trivially, because (bgtriangle inequality) no path in any graph can be shorter

than the distance between the two points. To prove the sdoendality, we apply an induction based on the
number of edges of the shortest path in the spanner.

For the basis case, observe that; &ndy are joined by an edge i@, then clearlyog (z, y) = |lzy| <t ||zy]|
forallt > 1.

If, on the other hand, there is no direct edge betweemdy, we know thatr andy must lie in some well-
separated paifP,, P, } defined by the pair of nodds:, v} in the quadtree. let, = rep(u) andp, = rep(v) be

18The lower bound ofl.5932 appears in “Toward the Tight Bound of the Stretch Factor daeay Triangulations,” by G. Xia and L. Zhang,
Proc. CCCG 2011. The upper bound df998 appears in “Improved Upper Bound on the Stretch Factor of ibelg Triangulations,” by G. Xia,
Proc. SoCG2011.

Lecture Notes 97 CMSC 754



Spanner

rep(u) rep(v)

(b)

Fig. 88: A WSPD and its associated spanner.

the respective representative representative. (It mighbatp,, = = or p, = y, but not both.) Let us consider
the length of the path from to p,, to p, to y. Since the edgép.,, p, } is in the graph, we have

5G(xapu) + 5G(puapv) + 6G(pv7 y)

<
< dg(,pu) + |lPupsll + dc (Do, y)-

(See Fig. 89.)

Fig. 89: Proof of the spanner bound.

Since the paths from to p,, andp,, to y are subpaths, and hence shorter than the overall path, wappaythe
induction hypothesis, which yieldg; (z, p,.) < t||zp,|| anddég(p.,y) < tl|p.y|, yielding

dc(z,y) < t(llzpull + llpoyl) + llPupyl- 1)

Let s denote the separation factor for the WSPD. Sift;eand P, are s-well separated, we know that each
of these point sets can be enclosed within a ball of radiggch that the two balls are separated by distance
at leastsr. Thus, we havenax(||zp.||, |pyyll) < 2r, and|zy| > sr. From the second inequality we have
r < |lzy|l/s. By the triangle inequality, we have

IPupoll < llpuzll + llzyll + lypol < 2r + [layl +2r < 4r + [[zy.
Combining these observations with Eq. (1) we obtain
g (w,y) < #(2r+2r) + (4r + [lay]) < 4r(t+1) + [zy].
From the fact that < ||zy||/s we have

Seley) < W+

A(t+1)
ool + eyl < (14 Y

Lecture Notes 98 CMSC 754



To complete the proof, observe that it suffices to sedesu thatl + 4(¢ + 1)/s < ¢t. We easily see that this is
true if s is chosen so that
4 t+1
s = — .
t—1

Since we assume that> 1, this is possible for any. Thus, substituting this value ef we have

dae) < (14 g ) bl = (= D)l = ¢yl

which completes the correcness proof.

The number of edges in the spannefig?n). Since spanners are most interesting for small stretchrigdet
us assume that< 2. If we express ast = 1 + ¢ for e < 1, we see that the size of the spanner is

0 (1+e)+1\? 12\  n
O(s n)—0<<4(1+€)_1) n| <O ) n —O(Ed).
In conclusion, we have the following theorem:

Theorem: Given a point sef” in R¢ ande > 0, a(1 + ¢)-spanner forP containingO(n/e?) edges can be
computed in time)(nlogn + n/e?).

Approximating the Euclidean MST: We will now show that with the above spanner result, we canprgmans-
approximation to the minimum spanning tree. Suppose weiaea @ setP of n points inR¢, and we wish to
compute the Euclidean minimum spanning tree (MSTYofsiven a graph withy vertices an@ edges, it is well
known that the MST can be computed in tiée + v log v). It follows that we can compute the MST of a set
of points in any dimension by first constructing the Euclidgaaph and then computing its MST, which takes
O(n?) time. To compute the approximation to the MST, we first cargta(1 + ¢)-spanner, call it7, and then
compute and return the MST 6f (see Fig. 90). This approach has an overall running tin@(aflog n + s%n).

Euclidean graph Euclidean MST Spanner Approximate MST

Fig. 90: Approximating the Euclidean MST.
To see why this works, for any pair of poinfs, y}, letw(x, y) = ||zy|| denote the weight of the edge between
them in the complete Euclidean graph. [etlenote the edges of the Euclidean minimum weight spannéeg tr
andw(T) denote the total weight of its edges. For each edge/} < T, let 7 (x, y) denote the shortest path
(as a set of edges) betweermndy in the spannel(s. SinceG is a spanner, we have
w(ra(z,y)) = dalz,y) < (1+e)lzyll.

Now, consider the subgraflf C G formed by taking the union of all the edgesmf (z, y) for all {z,y} € T.
That is,G andG’ have the same vertices, but each edge of the MST is replacésispanner path. Clearlg’

Lecture Notes 99 CMSC 754



is connected (but it may not be a tree). We can bound the weight in terms of the weight of the Euclidean

MST:
w(@) = Y wmelry) < Y (L+e)|ay]
{z,y}eT {z,y}eT
= (1+2) Y eyl = (1 +e)w(D).

{z,y}eT

However, becaus€ andG’ share the same vertices, and the edge sét' @ a subset of the edge set@f it
follows thatw(MST(G) < w(MST(G")). (To see this, observe that if you have fewer edges from wibiébrm
the MST, you may generally be forced to use edges of highegiwed connect all the vertices.) Combining
everything we have

w(MST(G)) < w(MST(G')) < w(G') < (1+e)w(T),

yielding the desired approximation bound.

Lecture 20: Coresets for Directional Width

Coresets: One of the issues that arises when dealing with very largmga@ data sets, especially in multi-dimensional
spaces, is that the computational complexity of many gedengptimization problems grows so rapidly that it
is not feasible to solve the problem exactly. In the previesture, we saw how the concept of a well-separated
pair decomposition can be used to approximate a quadratibeuof objects (all pairs) by a smaller linear
number of objects (the well separated pairs). Another aagrdor simplifying large data sets is to apply some
sort of sampling. The idea is as follows. Rather than solvegimization problem on some (large) setc R¢,
we will extract a relatively small subsét C P, and then solve the problem exactly @n

The question arises, how should the @dbe selected and what properties should it have in order taagtee a
certain degree of accuracy? Consider the following exarfinpie geometric statistics. A sét of n points inR?
definesO(n?) triangles whose vertices are drawn frét Suppose that you wanted to estimateatieragearea

of these triangles. You could solve this naivelyGrin®) time, but the central limit theorem from probability
theory states that the average of a sufficiently large ransiommple will be a reasonable estimate to the average.
This suggests that a good way to sel@ds to take a random sample 6%

Note, however, that random sampling is not always the bgsbaph. For example, suppose that you wanted to
approximate the minimum enclosing ball (MEB) for a point Befsee Fig. 91(a)). A random subset may result
in a ball that is much smaller than the MEB. This will happear, édxample, ifP is densely clustered but with

a small number of distant outlying points (see Fig. 91(b))slich a case, the sampling method should favor
points that are near the extremestt$ distribution (see Fig. 91(c)).

exact MEB

MEB of coreset

0

(a) (b) (c)

Fig. 91: Approximating the minimum enclosing ball (MEB)) @xact solution, (b) MEB of a random sample, (c)
MEB of a possible coreset.

Lecture Notes 100 CMSC 754



Abstractly, consider any optimization problem on poinss€&or a point seP, let f*(P) denote the value of the
optimal solution. Giverz > 0, we say that subs&) C P is ane-coreseffor this problem if, the relative error
committed by solving the problem d@p is at most, that is:

/(@)
1—-¢ < < l+e.
f*(P)
For a given optimization problem, the relevant questioes @) does a small coreset exist? (2) if so, how large
must the coreset be to guarantee a given degree of accur@c®w quickly can such a coreset be computed?
Ideally, the coreset should be significantly smaller thafror many optimization problems, the coreset size is
actually independent of (but does depend o).

In this lecture, we will present algorithms for computingesets for a problem called thtrectional width
This problem can be viewed as a way of approximating the cohu#l of a point set.

Directional Width and Coresets: Consider a seP of points in reald-dimensional spac®®. Given vectorsi, 7 €
R?, let (- @) denote the standard inner (dot) producRifi From basic linear algebra we know that, given any
vector« of unit length, for any vector, (v- %) is the length of’s orthogonal projection ont@. Thedirectional
width of P in direction is defined to be the minimum distance between two hyperpldwgb orthogonal to
i, that hasP “sandwiched” between them. More formally, if we think of Bgmintp € P as a vectop € R¢,
the directional width can be formally defined to be

Wp() = max(p- @) — min(p- 4
p(i) = max(p" i) — min(p i)

(see Fig. 92(a)). Note that this is a signed quantity, but reeygically interested only in its magnitude.

(a) (b)

Fig. 92: Directional width and coresets. In (b) the point€adire shown as black points.

The directional width has a number of nice properties. Farmge, it is invariant under translation and it scales
linearly if P is uniformly scaled.

Note that the only points aP that are relevant to the directional width are the pointshefdonvex hull ofP,
that is, conyP). Although we can compute co(®) in O(n logn) time in[R2, the combinatorial complexity of
the hull may be as large &%n%/2]) in R?. We seek a more space efficient solution, but we will allowafor
approximation error.

Given0 < ¢ < 1, we say that a subsét C P is ane-coreset for directional widtlif, for any unit vectorii,
Weo(u) > (1 —e)Wp(u).

That is, the perpendicular width of the minimum slab orthwado« for @) is smaller than that of by a factor
of only (1 — ¢) (see Fig. 92(b)). We will show that, given anelement point seP in R<, it is possible to
compute an-coreset for directional width of siz@(1/(?~1)/2). For the rest of this lecture, the term “coreset”
will mean “coreset for directional width,” and if not speeifi, the approximation parametekis

Note that coresets combine nicely. In particular, it is éagyrove the following:

Lecture Notes 101 CMSC 754



Chain Property: If X is ane-coreset of” andY is ane’-coreset ofZ, thenX is an(e + ¢’) coreset ofZ.
Union Property: If X is ane-coreset of? and X"’ is ans-coreset ofP’, thenX U X’ is ans-coreset ofP U P’.

Quick-and-Dirty Construction: Let's begin by considering a very simple, but not very effitjecoreset for direc-
tional widths. We will apply the a utility lemma, which statéhat it is possible to reduce the problem of
computing a coreset for directional widths to one in whiak ¢cbnvex hull of the point set is “fat”.

Before giving the lemma, let us give a definition. LBtdenote ad-dimensional unit ball, and for any scalar
A\ > 0, let \B be a scaled copy aB by a factor\. Givena < 1, we say that a convex body in R? is a-fat

if there exist two positive scalars, and \,, such thati lies within a translate ok, B, K contains a translate
of A\1B, and\; /)y = « (see Fig. 93(a)). Observe that any Euclidean baltat. A line segment i$-fat. It

is easy to verify that @-dimensional hypercube {4 /v/d)-fat. We say that a point sét is a-fat if its convex
hull, con P), is a-fat (see Fig. 93(b)).

Fig. 93: The definition of-fatness for: (a) a convex body and (b) for a point seP.

Lemma 1: Given ann-element point se> C R<, there exists a linear transformati@h such thatT' P is
contained within a unit ball and is-fat, wherex is a constant depending only on the dimension. Also,
a subsetC C P is a directional-widthe-coreset forP if and only if TC' is a directional-widthe-coreset.
The transformatiod” can be computed i®(n) time.

Proof: (Sketch) LetK' = conv(P). If computation time is not an issue, it is possible to usenadfas fact from
the theory of convexity. This fact, callelibhn’s Theoremstates that if+ is a maximum volume ellipsoid
contained withink’, then (subject to a suitable translatidk)is contained withinlE/, whered E denotes
a scaled copy oF by a factor ofd (the dimension). Tak&' to be the linear transformation that stretches
dFE into a unit ball (see Fig. 94(a)—(b)). (For example, throaghappropriate rotation, we can align the
principal axes off’ with the coordinate axes and then apply a scaling factor¢h efithe coordinate axes
so that each principal axis of is of lengtlid. The expanded ellipse will be mapped to a unit ball, and we

havea = 1/d.)
 eep (IO e rp
P TP S0 E C & g TC
TH-1g
A N
(TT)~lg
(a) (b) (c) (d)

Fig. 94: Proof of Lemma 1.

The resulting transformation will not generally preserirectional widths, but for our purposes, it suffices
that it preserves theatios of directional widths. (More formally, through basic linedgebra, we can show

Lecture Notes 102 CMSC 754



that for any unit vectofi the ratio of the widths two sets and P alongi is equal to the ratio of the widths
of TC andT P relative to the transformed directi¢f’™) ~ 1 (see Fig. 94(c)—(d)). We will omit the simple
proof.) The maximum ratio of directional widths (over alliuwectors) is therefore preserved, which
implies that the coreset condition is also preserved.

To obtain theO(n) running time, it suffices to compute a constant factor appmakon to the John ellip-
soid. Such a construction has been given by Barequet anéé&lad.

Armed with the above lemma, we may proceed as follows to ceenpur quick-and-dirty coreset. First, we
assume thaP has been fattened, by the above procediités contained within a unit balB and that cony®
contains a translate of the shrunken half. BecauseP is sandwiched betweenB and B, it follows that the
width of P along any direction is at leag and at mose. Since no width is smaller tha2r, in order to

achieve a relative error @f, it suffices to approximate any width to an absolute erront ofi@st2ae, which we
will denote bye'.

Let H = [-1,+1] be a hypercube that contaifis SubdivideH into a grid of hypercubes whose diameters
are at most’/2 (see Fig. 95(a)). Each edge Hf will be subdivided intaO(1/¢") = O(1/¢) intervals. Thus,
the total number of hypercubes in the gridigl /=?). For each such hypercube, if it contains a poinPofdd
any one such point t@'. The resulting number of points af cannot exceed the number of hypercubes, which

isO(1/e%).
H H
o] _&'/2 '?\_/ e'/2
St celP cep
o'-.,_ 0.:00. °° o.o. . ‘GC ‘GC
() (b)

Fig. 95: The quick-and-dirty coreset construction: (a)iae€(1/c%) and (b) the improved construction of of size
O(1/4=1).

We can do this efficiently by hashing each point accordin@¢dandex of the hypercube it lies within. We retain
one point from each nonempty hash bucket. This can be dof¢rintime.

Theorem 2: Given ann-element point seP C R, in O(n) time it is possible to compute ancoreset of size
O(1/<%) for directional width.

Proof: It suffices the establish the correctness of the above aat&tn. For each poinp € P there is a
point of C within distance=’ /2. Therefore, given any directiof if p; andp, are the two points oP that
determine the extremes of the width along this directioantive can find two pointg andg, in C' that are
within distance:"/2 of each, implying that the resulting width is within (absludistance2(¢’/2) = &’
of the true width. As established above, since the width indirection is at leas2«, the relative error is

at most
€ 20

_—= :5’

2 20
as desired.

Improved Construction: It is possible make a small improvement in the size of thelgaied-dirty coreset. Observe

from Fig. 95(a) that we may select many points from the ioteaf cony P), which clearly can play no useful
role in the coreset construction. Rather than partifibimto small hypercubes, we can instead partition the upper

Lecture Notes 103 CMSC 754



(d — 1)-dimensional facet off into O(1/¢9~1) cubes of diameter' /2, and then extrude each into a “column
that passes througH. For each column, take the highest and lowest point to add (see Fig. 95(b)). We
leave it as an easy geometric exercise to show that this el suffices.

Smarter Coreset Construction: The above coreset construction has the advantage of sitypbat, as shall see
next, it is possible to construct much smaller coresets fi@ctonal widths. We will reduce the size from
O(1/¢%1) to O(1/£(4=1)/2), thus reducing the exponential dependency by half.

Our general approach will be similar to the one taken aboirst, ve will assume that the point sBthas been
“fattened” so that it lies within a unit ball, and its convexllcontains a ball of radius at least wherea < 1 is
a constant depending on dimension. As observed earlieg #ire width ofP in any direction is at leasta, in
order to achieve a relative error of it suffices to compute a coreset whose absolute differeneadth along
any direction is at most’ = 2ae.

A natural approach to solving this problem would involvefarinly sampling a large number (dependinga)n

of different directionsi, computing the two extreme points that maximize and mingntie inner product with

i and taking these to be the elementgbf It is noteworthy, that this construction does not resulthie best
solution. In particular, it can be shown that the angulatagise between neighboring directions may need to
be as small as, and this would lead t&(1/s9~1) sampled directions, which is asymptotically the same as the
(small improvement to) the quick-and-dirty method. Therapph that we will take is similar in spirit, but the
sampling process will be based not on computing extremepbirt instead on computing nearest neighbors.

We proceed as follows. Recall th&tis contained within a unit balB. Let S denote the sphere of radi@s
that is concentric wittB. (The expansion factdr is not critical. Any constant factor expansion works, b th
constants in the analysis will need to be adjusted.)dLet \/ca/4. (The source of this “magic number” will
become apparent later.) On the sphg&reonstruct a-dense set of points, denotél(see Fig. 96). This means
that, for every point ort, there is a point of) within distance’. The surface area of is constant, and since
the sphere is a manifold of dimensidn- 1, it follows that|Q| = O(1/§%~1) = O(1/¢(?=1)/2), For each point
of , compute its nearest neighbor fh*° Let C denote the resulting subset Bf We will show thatC' is the
desired coreset.

OGQ
ccC

Fig. 96: Smarter coreset construction. (Technically, thints of Q are connected to the closest point®f not
conv(P).)

In the figure we have connected each poinf)db its closest point on cofi¥’). Itis a bit easier to conceptualize
the construction as sampling points from cORY. (Recall that the coreset definition requires that the atres
is a subset of?.) There are a couple of aspects of the construction that @eworthy. First, observe that
the construction tends to sample pointsiothat lie close to regions where the curvature®d convex hull is
higher (see Fig. 96). This is useful, because areas of higlattre need more points to approximate them well.

19This clever construction was discovered in the context dftppe approximation independently by E. M. Bronstein andLIvanov, “The
approximation of convex sets by polyedr&ftber. Math J. 16, 1976, 852-853 and R. Dudley, “Metric entropy of somesgasof sets with
differentiable boundariesJ. Appr. Th, 10, 1974, 227-236.

Lecture Notes 104 CMSC 754



Also, because the points ghare chosen to b&dense orf, it can be shown that they will be at least this dense
on P’'s convex hull. Before presenting the proof of correctnasswill prove a technical lemma.

Lemma 2: Let0 < 6 < 1/2, and letg, ¢’ € R% such that|q|| > 1 and||¢’ — q|| < J (see Fig. 97). LeB(q¢’) be
a ball centered af' of radius||¢’||. Let be a unit length vector from the origin to Then

min (p' - @) > —6°.

p’'€B(q’) -

Proof: (Sketch) We will prove the lemma iR? and leave the generalizationIky as an exercise. Letdenote
the origin, and lef = ||¢|| be the distance fromto the origin. Let us assume (through a suitable rotation)
that4 is aligned with ther-coordinate axis. The quantity’ - @) is the length of the projection gf onto

thez-axis, that is, it is just the-coordinate ofy’. We want to show that this coordinate cannot be smaller
than—42.

Fig. 97: Analysis of the coreset construction.

We will prove a slightly stronger version of the above. Intardar, let us assume that is contained
within a square of side lengthy centered ai. This suffices because this square contains all pointsi¢hat |
within distance’ of ¢q. Observe that the boundary of the bBll¢’) passes through the origin. We wish to
bound how far such a ball might protrude over ther)-axis. Its easy to see that worst case arises when
¢’ is placed in the upper left corner of the square (see Fig)R7Call this pointg”.

The distance betweeyl’ and the origin is\/(¢ — §)? + 2. Therefore, the amount by which the ball of
radius||¢” || centered ali¢”|| may protrude over thé—z)-axis is at most

((—0)2+02—(L—0)

which we will denote byws. Sincep lies in this ball, to complete the proof it suffices to showtthg < §2.
To simplify this, we multiply by a fraction whose numeratmdadenominator are bot{y (¢ — §)2 + 62 +
(£ —0). Itis easily verified that /(¢ — )2 + 62 > £ — §. Using this and the fact thdt> 4, we have

(L—8)2+8%) — ((—6)2 _ 200—08)5+6 25— 06

WS R R 8 S -0+  20—3)
< 62 < 62
= 200—9) ’

as desired.

To establish the correctness of the construction, consigedirectioni. Letp € P be the point that maximizes
(p- ). We will show that there is a poipt € C such tha(p - @) — (p' - @) < &’/2. In particular, let us translate
the coordinate system so thais at the origin, and let us rotate space so thé horizontal (see Fig. 97(b)).
Let ¢ be the point at which the extension®@intersects the spher® By our construction, there exists a point

Lecture Notes 105 CMSC 754



¢ € Q that lies within distancé of ¢, that is||¢’ — ¢|| < 4. Letp’ be the nearest neighbor &fto ¢’. Again, by
our constructiorp’ is in the coreset. Sinaglies on a sphere of radisand P is contained within the unit ball,

it follows that||q|| > 1. Thus, we satisfy the conditions of Lemma 2. Therefpé, i) > —62 = ca /4 < &' /2.
Thus, the absolute error in the inner product is at m6&2, and hence (combining both the maximum and
minimum sides) the total absolute error is at mdstBy the remarks made earlier, this implies that the total
relative error i, as desired.

Lecture 21: Geometric Basics

Geometry Basics: As we go through the semester, we will introduce much of thergaric facts and computational
primitives that we will be needing. For the most part, we w#sume that any geometric primitive involving a
constant number of elements of constant complexity can bguated inO(1) time, and we will not concern
ourselves with how this computation is done. (For exampiegrgthree non-collinear points in the plane,
compute the unique circle passing through these pointsnetieless, for a bit of completeness, let us begin
with a quick review of the basic elements of affine and Euclidgeometry.

There are a number of different geometric systems that camsed to express geometric algorithms: affine
geometry, Euclidean geometry, and projective geometryexample. This semester we will be working almost
exclusively with affine and Euclidean geometry. Beforeiggtto Euclidean geometry we will first define a

somewhat more basic geometry called affine geometry. Ladeviwadd one operation, called an inner product,
which extends affine geometry to Euclidean geometry.

Affine Geometry: An affine geometry consists of a set sfalars(the real numbers), a set pbints and a set of
free vectorqor simplyvectord. Points are used to specify position. Free vectors are tasggecify direction
and magnitude, but have no fixed position in space. (This ¢®irirast to linear algebra where there is no real
distinction between points and vectors. However this migsitbn is useful, since the two are conceptually quite
different.)

The following are the operations that can be performed olasggooints, and vectors. Vector operations are
just the familiar ones from linear algebra. It is possibleubtract two points. The differenge- ¢ of two points
results in a free vector directed fragrto p. It is also possible to add a point to a vector. In point-veattdition

p + v results in the point which is translated byrom p. Letting.S denote an generic scaladf,a generic vector
and P a generic point, the following are the legal operations finafgeometry:

SV =V scalar-vector multiplication
V+V —- V vector addition
P-P — V point subtraction
P+V — P point-vector addition
— — p .
U+ v P+
v p—q v
u q
p
vector addition point subtraction point subtraction

Fig. 98: Affine operations.

Lecture Notes 106 CMSC 754



A number of operations can be derived from these. For exam@ean define the subtraction of two vectors
@ — v asd + (—1) - ¥ or scalar-vector division/« as(1/«) - ¥ provideda # 0. There is one special vector,
called thezero vector0, which has no magnitude, such that 0 = .

Note that it isnot possible to multiply a point times a scalar or to add two potogether. However there is a
special operation that combines these two elements, catlaeffine combinationGiven two pointg, andp,
and two scalarsy andag, such thatyg + a3 = 1, we define the affine combination

aff (po, p1; 0, 00) = agpo + aapr = po + a1(p1 — po)-

Note that the middle term of the above equation is not legadrgbur list of operations. But this is how the
affine combination is typically expressed, namely as theylsted average of two points. The right-hand side
(which is easily seen to be algebraically equivalent) isiled\n important observation is that,zf, # p;, then
the pointaff (pg, p1; oo, 1) lies on the line joiningyy andp;. As «; varies from—oo to +oc it traces out all
the points on this line.

r=p+30a-0p) ’
E 1 2
\ 3P+ 34

" T (-aptag

Fig. 99: Affine combination.

In the special case whefe< ag, oy < 1, aff(pg, p1; ap, 1) is @ point that subdivides the line segmagp
into two subsegments of relative sizesto «y. The resulting operation is calleccanvex combinatigrand the
set of all convex combinations traces out the line segmgmt.

It is easy to extend both types of combinations to more thanpuints, by adding the condition that the sum
(7)) + a1+ = 1.

aff (po, p1, p2; o, a1, 2) = po + aupr + aepe = po + a1 (p1 — po) + a2(p2 — Po)-

The set of all affine combinations of three (non-collineaojnts generates a plane. The set of all convex
combinations of three points generates all the points otribagle defined by the points. These shapes are
called theaffine sparor affine closurgandconvex closuref the points, respectively.

Euclidean Geometry: In affine geometry we have provided no way to talk about angtedistances. Euclidean
geometry is an extension of affine geometry which includesamditional operation, called tlener product
which maps two real vectors (not points) into a nonnegaga. rOne important example of an inner product
is thedot product defined as follows. Suppose that telimensional vectorg andv are represented by the
(nonhomogeneous) coordinate vectQrs, us, . . ., ug) and(vy, v, . .., vq). Define

d
u-Uv= Z U; V4,

i=1
The dot product is useful in computing the following enttie

Length: of a vectord is defined to bé|v|| = V7 - ¥.

Normalization: Given any nonzero vectaf, define thenormalizationto be a vector of unit length that points
in the same direction as We will denote this byj:

—

v

’lA) = TS
7]

Lecture Notes 107 CMSC 754



Distance between points:Denoted either digp, ¢) or ||pq|| is the length of the vector between thelp,— ¢/|.
Angle: between two nonzero vectotisandv (ranging from O tor) is

- =

u-v
ang(@, @) = cos™! (H) =cos™ H(u - D).
’ [l 1]
This is easy to derive from the law of cosines.

Orientation of Points: In order to make discrete decisions, we would like a geomeiperation that operates on
points in a manner that is analogous to the relational opas{<, =, >) with numbers. There does not seem
to be any natural intrinsic way to compare two pointsiidimensional space, but there is a natural relation
between ordere¢d + 1)-tuples of points ind-space, which extends the notion of binary relations in deep
calledorientation

Given an ordered triple of point®, ¢, ) in the plane, we say that they hapesitive orientatiorif they define
a counterclockwise oriented trianglgggative orientatiorif they define a clockwise oriented triangle, areto
orientationif they are collinear (which includes as well the case whex@dr more of the points are identical).
Note that orientation depends on the order in which the pairg given.

. «q
........ q P2
» ° 0 .
K . r . q
o T . g q p=r
p p )
positive negative Zero Zero

Fig. 100: Orientations of the ordered trigle ¢, 7).

Orientation is formally defined as the sign of the determirwdrthe points given in homogeneous coordinates,
that is, by prepending a 1 to each coordinate. For examptbeiplane, we define

L pa py
Orient(p,q,7) =det| 1 ¢, gy
1 rg my

Observe that in the 1-dimensional case, Ofignt) is justg — p. Hence itis positive ip < ¢, zero ifp = ¢, and
negative ifp > ¢. Thus orientation generalizes =, > in 1-dimensional space. Also note that the sign of the
orientation of an ordered triple is unchanged if the poimésteanslated, rotated, or scaled (by a positive scale
factor). A reflection transformation, e.gf(x,y) = (—=z,y), reverses the sign of the orientation. In general,
applying any affine transformation to the point alters thgn sdf the orientation according to the sign of the
matrix used in the transformation.

This generalizes readily to higher dimensions. For exangien an ordered 4-tuple points in 3-space, we can
define their orientation as being either positive (formingghat-handed screw), negative (a left-handed screw),
or zero (coplanar). It can be computed as the sign of therd@tant of an appropriaté x 4 generalization of
the above determinant. This can be generalized to any atdére 1)-tuple of points ind-space.

Areas and Angles: The orientation determinant, together with the Euclideammcan be used to compute angles in
the plane. This determinant Ori¢ptq,r) is equal to twice the signed area of the trianglgqr (positive if
CCW and negative otherwise). Thus the area of the triangiebeadetermined by dividing this quantity by 2.
In general in dimensior the area of the simplex spanned #w- 1 points can be determined by taking this
determinant and dividing by! = d-(d—1) --- 2 1. Given the capability to compute the area of any triangle (or
simplex in higher dimensions), it is possible to computeubleme of any polygon (or polyhedron), given an

Lecture Notes 108 CMSC 754



appropriate subdivision into these basic elements. (Sscdlbdivision does not need to be disjoint. The simplest
methods that | know of use a subdivision into overlappingtp@dy and negatively oriented shapes, such that
the signed contribution of the volumes of regions outsidedhject cancel each other out.)

Recall that the dot product returns the cosine of an angleieder, this is not helpful for distinguishing positive
from negative angles. The sine of the angjle Zpqr (the signed angled from vectpr— ¢ to vectorr — ¢) can
be computed as

Orient(q, p,7)

lp—all-lr—all
(Notice the order of the parameters.) By knowing both the sind cosine of an angle we can unambiguously
determine the angle.

sinf =

Topology Terminology: Although we will not discuss topology with any degree of faliem, we will need to use
some terminology from topology. These terms deserve fodefihitions, but we are going to cheat and rely on
intuitive definitions, which will suffice for the simple, weddehaved geometric objects that we will be dealing
with. Beware that these definitions are not fully generatl gou are referred to a good text on topology for
formal definitions.

For our purposes, for > 0, define ther-neighborhoof a pointp to be the set of points whose distancepto
is strictly less tham, that is, it is the set of points lying within an open ball oflias  centered aboui. Given
a setS, a pointp is aninterior point of S if for some radius- the neighborhood abowtof radiusr is contained
within S. A point is anexterior pointif it lies in the interior of the complement &f. A points that is neither
interior nor exterior is doundary point A set isopenif it contains none of its boundary points adidsedif its
complement is open. { is in S but is not an interior point, we will call it aoundary point

We say that a geometric setheundedif it can be enclosed in a ball of finite radius. A set@mpactif it is
both closed and bounded.

In general, convex sets may have either straight or curveshdaries and may be bounded or unbounded.
Convex sets may be topologically open or closed. Some exague shown in the figure below. The convex
hull of a finite set of points in the plane is a bounded, closedyex polygon.

. boundary
L, exterior
S s

neighborhood open closed  unbounded

Fig. 101: Terminology.

Lecture 22: DCELs and Subdivision Intersection

Doubly-connected Edge List: We consider the question of how to represent plane stréiighigraphs (or PSLG).
The DCEL is a commoedge-based representatiodertex and face information is also included for whatever
geometric application is using the data structure. Theeetaee sets of records one for each element in the
PSLG:vertex recordsa edge recordsandface records For the purposes of unambiguously defining left and
right, each undirected edge is represented by two dirdw@teedges

We will make a simplifying assumption that faces do not haske$ inside of them. This assumption can be
satisfied by introducing some numberdafmmy edge®ining each hole either to the outer boundary of the face,
or to some other hole that has been connected to the outedaguim this way. With this assumption, it may
be assumed that the edges bounding each face form a singjtelisgc

Lecture Notes 109 CMSC 754



Vertex: Each vertex stores its coordinates, along with a pointenyarecident directed edge that has this vertex
asits originy. i nc_edge.

Edge: Each undirected edge is represented as two directed edgeb. elge has a pointer to the oppositely
directed edge, called itavin. Each directed edge has arigin anddestinatiorvertex. Each directed edge
is associate with two faces, one to its left and one to itstrigh
We store a pointer to the origin vertex or g. (We do not need to define the destinatiendest , since
it may be defined to be. t wi n. or g.)

We store a pointer to the face to the left of the edgéef t (we can access the face to the right from the
twin edge). This is called the dent face. We also store thé aeot previous directed edges in counter-
clockwise order about the incident fage,next ande. pr ev, respectively.

Face: Each facef stores a pointer to a single edge for which this face is thieémt facef . i nc_edge. (See
the text for the more general case of dealing with holes.)

DCEL Alternative view

Fig. 102: Doubly-connected edge list.

The figure shows two ways of visualizing the DCEL. One is imgmof a collection of doubled-up directed
edges. An alternative way of viewing the data structure gihags a better sense of the connectivity structure is
based on covering each edge with a two element block, onedad the other for its twin. The next and prev
pointers provide links around each face of the polygon. The pointers are directed counterclockwise around
each face and the prev pointers are directed clockwise.

Of course, in addition the data structure may be enhancddwiititever application data is relevant. In some
applications, it is not necessary to know either the faceestex information (or both) at all, and if so these
records may be deleted. See the book for a complete example.

For example, suppose that we wanted to enumerate the wettiigelie on some facg. Here is the code:

Vertex enumeration using DCEL

enunerate_vertices(Face f) {
Edge start = f.inc_edge;
Edge e = start;
do {
out put e.org;
e = e.next;
} while (e !'= start);

Merging subdivisions: Let us return to the applications problem that lead to thensgy intersection problem. Sup-
pose that we have two planar subdivisiofig,andSs, and we want to compute their overlay. In particular, this
is a subdivision whose vertices are the union of the verti€esch subdivision and the points of intersection of
the line segments in the subdivision. (Because we assurheabh subdivision is a planar graph, the only new

Lecture Notes 110 CMSC 754



vertices that could arise will arise from the intersectiétwm edges, one frons; and the other fronss.) Sup-
pose that each subdivision is represented using a DCEL. @asdapt the plane-sweep algorithm to generate
the DCEL of the overlaid subdivision?

The answer is yes. The algorithm will destroy the origindddivisions, so it may be desirable to copy them
before beginning this process. The first part of the procestaightforward, but perhaps a little tedious. This
part consists of building the edge and vertex records fon#ve subdivision. The second part involves building
the face records. It is more complicated because it is giy@mat possible to know the face structure at the
moment that the sweep is advancing, without looking “inte thture” of the sweep to see whether regions
will merge. (You might try to convince yourself of this.) Tleatire subdivision is built first, and then the face
information is constructed and added later. We will skipphe of updating the face information (see the text).

For the first part, the most illustrative case arises wherstieep is processing an intersection event. In this
case the two segments arise as two edgesndb; from the two subdivisions. We will assume that we select
the half-edges that are directed from left to right acrossstieep-line. The process is described below (and is
illustrated in the figure below). It makes use of two auxjli@roceduresSplit(aq, as) splits an edge; at its
midpoint into two consecutive edges followed by as, and linksa, into the structure Splice(ay, as, by, ba)
takes two such split edges and links them all together.

Merge two edges into a common subdivision
Merge(ai, b1) :
(1) Create a new vertexat the intersection point.

(2) Split each of the two intersecting edges, by adding a vertex at the onrimtersection point. Lei> andb:. be the new
edge pieces. They are created by the ealls= Split(a:) andbs = Split(b1) given below.

(3) Link the four edges together by invokisglice(a1, a2, b1, b2), given below.

The splitting procedure creates the new edge, links it itdogy After this the edges have been split, but they
are not linked to each other. The edge constructor is giveotiigin and destination of the new edge and creates
a new edge and its twin. The procedure below initializeshaldther fields. Also note that the destination of
a1, that is the origin ofa;’s twin must be updated, which we have omitted. The splicegulare interlinks
four edges around a common vertex in the counterclockwiderar (entering),b; (entering),a. (leaving),b,

(leaving).
Split an edge into two edges

Split(edge &al, edge &a2) ({ /] a2 is returned

a2 = new edge(v, al.dest()); /'l create edge (v, al.dest)

a2.next = al.next; al.next.prev = a2;

al.next = a2; a2.prev = al;

alt = al.tw n; a2t = a2.twin; // the twins

a2t.prev = alt.prev; alt.prev.next = a2t;

alt.prev = a2t; a2t.next = alt;
}

Splice four edges together

Splice(edge &l, edge &2, edge &bl, edge &b2) {
alt = al.tw n; a2t = a2.twn; /1 get the twins
blt = bl.twin; b2t = b2.twin;

al.next = b2; b2.prev = al; /1 link the edges together
b2t . next = a2; a2.prev = b2t;

a2t.next = bilt; blt.prev = a2t;

bl.next = alt; alt.prev = bil;

Lecture Notes 111 CMSC 754



Fig. 103: Updating the DCEL.

Lecture 23: Smallest Enclosing Disk

Smallest Enclosing Disk: Although the vast majority of applications of linear progmaing are in relatively high

dimensions, there are a number of interesting applicatiolesv dimensions. We will present one such example,
called thesmallest enclosing disk probleM/e are givem points in the plane and we are asked to find the closed
circular disk of minimum radius that encloses all of thesmzo We will present a randomized algorithm for
this problem that runs i®(n) expected time.

We should say a bit about terminology.ckcle is the set of points that are equidistant from some centet poi
A diskis the set of points lying within a circle. We can talk abopenor closeddisks to distinguish whether
the bounding circle itself is part of the disk. In higher dms®ns the generalization of a circle ispherein
3-space, ohyperspherén higher dimensions. The set of points lying within a spharbypersphere is called a
ball.

Before discussing algorithms, we first observe that anyleciscuniquely determined by three points (as the
circumcenter of the triangle they define). We will not protést but it follows as an easy consequence of
linearization, which we will discuss later in the lecture.

Claim: For any finite set of points in general position (no four coglar), the smallest enclosing disk either
has at least three points on its boundary, or it has two poamd these points form the diameter of the
circle. If there are three points then they subdivide theleibounding the disk into arcs of angle at most
.

Proof: Clearly if there are no points on the boundary the disk’suadiould be decreased. If there is only
one point on the boundary then this is also clearly true. dféhare two points on the boundary, and they
are separated by an arc of length strictly less thathen observe that we can find a disk that passes
through both points and has a slightly smaller radius. (Bysatering a disk whose center point is only
the perpendicular bisector of the two points and lies a sdistihnce closer to the line segment joining the
points.)

Thus, none of these configurations could be a candidate éomihimum enclosing disk. Also observe
that if there are three points that define the smallest eimgaisk they subdivide the circle into three arcs
each of angle at most (for otherwise we could apply the same operation above)aB&e points are in
general position we may assume there cannot be four or moneatar points.

This immediately suggests a simggkén*) time algorithm. InO(n?) time we can enumerate all triples of points
and then for each we generate the resulting circle and testhehit encloses all the points (h(n) additional

Lecture Notes 112 CMSC 754



Fig. 104: Contact points for a minimum enclosing disk.

time, for anO(n*) time algorithm. You might make a few observations to imprthis a bit (e.g. by using only
triples of points on the convex hull). But even so a reductiom O(n*) to O(n) is quite dramatic.

Linearization: We can “almost” reduce this problem to a linear programmirgpfem in 3-space. Although the
method does not work, it does illustrate the similarity begw this problem and LP.

Recall that a poinp = (p,, p,) lies within a circle with center point = (¢, ¢,) and radius- if
(p:c - Cw)2 + (py - Cy)2 < 2.

In our case we are givemsuch pointg; and are asked to determine whether there exists, andr satisfying
the resultingn inequalities, withr as small as possible. The problem is that these inequatigesly involve
quantities likec2 andr? and so are not linear inequalities in the parameters oféster

The technique ofinearizationcan be used to fix this. First let us expand the inequality alaowd rearrange the
terms

pi — 2pgCe + ci —l—pz — 2pycy + ci < r?
2ppcq + 2pycy + (r? —c2 — cz) > p? +p§.

Now, let us introduce a new paramefer= r* — ¢2 — ¢2. Now we have

(2p2)ce + (2py)ey + R > (03 +p3).

Observe that this is a linear inequality ép, ¢, and R. If we let p, andp, range over all the coordinates of
all then points we generate linear inequalities in 3-space, and so we can apply lineagnamming to find
the solution, right? The only problem is that the previougotive function was to minimize. Howeverr is
no longer a parameter in the new version of the problem. Siree’* = R + ¢2 + ci, and minimizingr is
equivalent to minimizing-? (since we are only interested in positive we could say that the objective is to
minimize R + ¢2 + cf/. Unfortunately, this is not a linear function of the paraemst.;, ¢, andR. Thus we are
left with an optimization problem in 3-space with linear stmaints and a nonlinear objective function.

This shows that LP is closely related, and so perhaps the sohriques can be applied.

Randomized Incremental Algorithm: Let us consider how we can modify the randomized incremeaitadrithm
for LP directly to solve this problem. The algorithm will micreach step of the randomized LP algorithm.

To start we randomly permute the points. We select any twotp@nd compute the unigue circle with these
points as diameter. (We could have started with three justasy.) LetD;_; denote the minimum disk after
the insertion of the first — 1 points. For poinp; we determine in constant time whether the point lies within
D;_4. If so, then we seD; = D, _; and go on to the next stage. If not, then we need to update thentulisk

to containp;, letting D; denote the result. When the last point is inserted we oufput

How do we compute this updated disk? It might be tempting st fir say that we just need to compute the
smallest disk that enclosgsand the three points that define the current disk. Howevismitt hard to construct
examples in which doing so will cause previously interiomp®to fall outside the current disk. As with the LP
problem we need to take all the existing points into consitien. But as in the LP algorithm we want some
way to reduce the “dimensionality” of the problem. How do veetkis?

The important claim is that if; is not in the minimum disk of the firgt— 1 points, therp; does help constrain
the problem, which we establish below.

Lecture Notes 113 CMSC 754



Claim: If p; ¢ D,;_; thenp, is on the boundary of the minimum enclosing disk for the fifsoints, D,.

Proof: The proof makes use of the following geometric observat®iven a disk of radiug; and a circle of
radiusry, wherer; < ro, the intersection of the disk with the circle is an arc of arlgks thamr. This is
because an arc of angteor more contains two (diametrically opposite) points whdistance from each
other is2ry, but the disk of radius; has diameter onlgr; and hence could not simultaneously cover two
such points.

Now, suppose to the contrary thatis not on the boundary dP;. It is easy to see that becauBg covers
a point not covered by, ; that D; must have larger radius than, ;. If we letr; denote the radius
of D;_; andry denote the radius ab;, then by the above argument, the diBk ; intersects the circle
boundingD; in an arc of angle less than (Shown in a heavy line in the figure below.)

Fig. 105: Whyp; must lie on the boundary db;.

Sincep; is not on the boundary ab;, the points defining); must be chosen from among the fiist 1
points, from which it follows that they all lie within this ar However, this would imply that between two
of the points is an arc of angle greater thafthe arc not shown with a heavy line) which, by the earlier
claim could not be a minimum enclosing disk.

The algorithm is identical in structure to the LP algorithie will randomly permute the points and insert them
one by one. For each new poipy, if it lies within the current disk then there is nothing todape. Otherwise,
we need to update the disk. We do this by computing the smafedosing disk that contains all the points
{p1,...,pi—1} and is constrained to haye on its boundary. (The requirement thatbe on the boundary is
analogous to the constraint used in linear programmingojbiEinum vertex lie on the line supporting the current
halfplane.)

This will involve a slightly different recursion. In thisearsion, when we encounter a point that lies outside the
current disk, we will then recurse on a subproblem in which peints are constrained to lie on the boundary of
the disk. Finally, if this subproblem requires a recursiga,will have a problem in which there are three points
constrained to lie on a the boundary of the disk. But this f@mlis trivial, since there is only one circle passing
through three points.

Lecture 24: Interval Trees

Segment Data: So far we have considered geometric data structures fangtpoints. However, there are many
others types of geometric data that we may want to store itaaslaucture. Today we consider how to store
orthogonal (horizontal and vertical) line segments in tlam@. We assume that a line segment is represented by
giving its pair ofendpoints The segments are allowed to intersect one another.

As a basic motivating query, we consider the followimgdow query Given a set of orthogonal line segments
S, which have been preprocessed, and given an orthogonay geetanglel?, count or report all the line
segments of5 that intersectV. We will assume thatV is closed and solid rectangle, so that even if a line
segment lies entirely inside &7 or intersects only the boundary @f, it is still reported. For example, given
the window below, the query would report the segments thatshown with solid lines, and segments with
broken lines would not be reported.

Window Queries for Orthogonal Segments: We will present a data structure, called theerval tree which (com-
bined with a range tree) can answer window counting quediesrthogonal line segments @(log? n) time,

Lecture Notes 114 CMSC 754



Minimum Enclosing Disk
MinDisk (P) :
(1) If |P] < 3, then return the disk passing through these points. Otherwise, randemiyfe the points i yielding the
sequencepi, p2, ..., Pn).
(2) Let D be the minimum disk enclosinfp, p2 }.
(3) fori =3to|P|do
(a) if pi € D;_1 thenDi =D;_;.
(a) elseD; = MinDiskWith1Pt{ P[1..i — 1], p;).
MinDiskWith1Pt (P, q) :
(1) Randomly permute the points . Let D1 be the minimum disk enclosingy, p1 }.
(2) fori =2to|P|do
(@) ifp; € D;—1thenD; = D;_;.
(@) elseD; = MinDiskWith2Ptg P[1..i — 1], q, p:).
MinDiskWith2Pts (P, q1, g2) :
(1) Randomly permute the points i. Let Dy be the minimum disk enclosingy, g2}
(2) fori =1to|P|do
(@) ifp; € D;—1 thenD; = D;_;.
(a) elseD; = Disk(q1, g2, pi).

o
e e Y Y
0-----0
0--==20 Onr{-seemmssmemnnns o

Fig. 106: Window Query.

Lecture Notes 115 CMSC 754



wheren is the number line segments. It can report these segme@ig:in log” n) time, where and is the total
number of segments reported. The interval tree G¥eslog n) storage and can be built @ (n logn) time.

We will consider the case of range reporting queries. (TheFesome subtleties in making this work for counting
queries.) We will derive our solution in steps, startinghaétasier subproblems and working up to the final
solution. To begin with, observe that the set of segmentsnkersect the window can be partitioned into three
types: those that have no endpointin, those that have one endpointlii, and those that have two endpoints
inW.

We already have a way to report segments of the second awictypies. In particular, we may build a range
tree just for the2n endpoints of the segments. We assume that each endpointdnassalink indicating the
line segment with which it is associated. Now, by applyingaage reporting query tél’ we can report all
these endpoints, and follow the cross-links to report tise@ated segments. Note that segments that have both
endpoints in the window will be reported twice, which is sevhat unpleasant. We could fix this either by
sorting the segments in some manner and removing dupljaatby marking each segment as it is reported and
ignoring segments that have already been marked. (If we askimg, after the query is finished we will need
to go back an “unmark” all the reported segments in prepandtr the next query.)

All that remains is how to report the segments that have npantinside the rectangular window. We will
do this by building two separate data structures, one fazbotal and one for vertical segments. A horizontal
segment that intersects the window but neither of its emdpantersects the window must pass entirely through
the window. Observe that such a segment intersects angaiditie passing from the top of the window to the
bottom. In particular, we could simply ask to report all zorital segments that intersect the left sidéiof
This is called avertical segment stabbing queryn summary, it suffices to solve the following subproblems
(and remove duplicates):

Endpoint inside: Report all the segments &f that have at least one endpoint insidé (This can be done
using a range query.)

Horizontal through segments: Report all the horizontal segments.®that intersect the left side é¥. (This
reduces to a vertical segment stabbing query.)

Vertical through segments: Report all the vertical segments Sfthat intersect the bottom side @f. (This
reduces to a horizontal segment stabbing query.)

We will present a solution to the problem of vertical segm&tabbing queries. Before dealing with this, we
will first consider a somewhat simpler problem, and then riyoitis simple solution to deal with the general
problem.

Vertical Line Stabbing Queries: Let us consider how to answer the following query, which teiiasting in its own
right. Suppose that we are given a collection of horizoma $egments' in the plane and are given an (infinite)
vertical query line/, : = z,. We want to report all the line segments®that intersect,,. Notice that for
the purposes of this query, thecoordinates are really irrelevant, and may be ignored. ¥¥ethink of each
horizontal line segment as being a closaterval along thez-axis. We show an example in the figure below on
the left.

As is true for all our data structures, we want some balan@dtevdecompose the set of intervals into subsets.
Since it is difficult to define some notion of order on intes/alve instead will order the endpoints. Sort the
interval endpoints along the-axis. Let(x,xs,...,z2,) be the resulting sorted sequence. kgf., be the
median of thesén endpoints. Split the intervals into three groupsthose that lie strictly to the left afneqs R
those that lie strictly to the right af,eq, and M those that contain the point,eq. We can then define a binary
tree by putting the intervals df in the left subtree and recursing, putting the interval&an the right subtree
and recursing. Note that if, < zmeqWe can eliminate the right subtree and:jf > zmeqWe can eliminate the
left subtree. See the figure right.

But how do we handle the intervals &f that containzmeq? We want to know which of these intervals intersects
the vertical line/,. At first it may seem that we have made no progress, since éapyhat we are back to the

Lecture Notes 116 CMSC 754



X=Xg stabs: b,c,d,e

Fig. 107: Line Stabbing Query.

same problem that we started with. However, we have gaireethtbrmation that all these intervals intersect
the vertical linexr = xmeq. How can we use this to our advantage?

Let us suppose for now that, < zmeq How can we store the intervals 8f to make it easier to report those
that intersect,. The simple trick is to sort these lines in increasing ordeheir left endpoint. Let\/; denote
the resulting sorted list. Observe that if some intervaldp does not intersedy;, then its left endpoint must be
to the right ofz,, and hence none of the subsequent intervals interégcihus, to report all the segments of
M, that intersect,,, we simply traverse the sorted list and list elements ureifwd one that does not intersect
¢,, that is, whose left endpoint lies to the rightaf. As soon as this happens we terminatek’lflenotes the
total number of segments 8f that intersect,,, then clearly this can be done@(k’ + 1) time.

On the other hand, what do we dadf > xmeq? This case is symmetrical. We simply sort all the segments of
M in a sequencel/r, which is sorted from right to left based on the right endpofreach segment. Thus each
element ofM is stored twice, but this will not affect the size of the finata structure by more than a constant
factor. The resulting data structure is calledrterval tree

Interval Trees: The general structure of the interval tree was derived abBaeh node of the interval tree has a left
child, right child, and itself contains the mediafvalue used to split the setneq, and the two sorted sefd,
and My (represented either as arrays or as linked lists) of intemat overlaprmeg. We assume that there is
a constructor that builds a node given these three entitibs.following high-level pseudocode describes the
basic recursive step in the construction of the intervad.tfehe initial call isr oot = | nt Tree(S), where
S is the initial set of intervals. Unlike most of the data stuwres we have seen so far, this one is not built by
the successive insertion of intervals (although it wouldpbssible to do so). Rather we assume that a set of
intervals$ is given as part of the constructor, and the entire strudtubeilt all at once. We assume that each
interval in S is represented as a p&irio, xni). An example is shown in the following figure.

We assert that the height of the tree(i§logn). To see this observe that there @eendpoints. Each time
through the recursion we split this into two subsgtand R of sizes at most half the original size (minus the
elements of\f). Thus after at modig(2n) levels we will reduce the set sizes to 1, after which the rsour
bottoms out. Thus the height of the tre&lglog n).

Implementing this constructor efficiently is a bit subtle.e\Weed to compute the median of the set of all
endpoints, and we also need to sort intervals by left endamid right endpoint. The fastest way to do this is to
presort all these values and store them in three separeteTisen as the sefs, R, andM are computed, we
simply copy items from these sorted lists to the appropsatéed lists, maintaining their order as we go. If we
do so, it can be shown that this procedure builds the engeeitrO(n log n) time.

The algorithm for answering a stabbing query was derived@b@/e summarize this algorithm below. Let
denote ther-coordinate of the query line.

This procedure actually has one small source of inefficiemtych was intentionally included to make code
look more symmetric. Can you spot it? Suppose that= t.zmed? In this case we will recursively search the
right subtree. However this subtree contains only intertlat are strictly to the right af,eqand so is a waste
of effort. However it does not affect the asymptotic runniimge.

Lecture Notes 117 CMSC 754



Interval tree construction

Int TreeNode IntTree(lnterval Set S) {
if (]S ==0) return null
xMed = nedi an endpoint of intervals in S
L ={[xlo, xhi] in S| xhi < xMed}
R = {[xlo, xhi] in S| xlo > xMd}
M= {[xlo, xhi] in S| xlo <= xMed <= xhi}
M. = sort Min increasing order of xlo
MR = sort Min decreasing order of xhi
t = new I ntTreeNode(xMed, M., M)
t.left = IntTree(l)
t.right = IntTree(R)
return t

/1 no nore
/1 medi an endpoi nt

/1 left of nedian
/1 right of nedian
/1 contains nedian
/]l sort M

/! this node
/] left subtree
/1 right subtree

(ML)(MR)

Ne e

0 5 10 15 20 25 30

Fig. 108: Interval Tree.

(d.f,h,i) @ (i,f,d,h)

‘ (a)(a) (9)(9) (J)(i) (ﬂ)(n)

Line Stabbing Queries for an Interval Tree

stab(lnt TreeNode t, Scalar xq) {
if (t == null) return /1 fell out of tree
if (xq < t.xMed) { /] left of nedian?
for (i =0; i <t.M.length; i++) { /] traverse M
if (t.MJ[i].lo <=xq) print(t.MJ[i])// ..report if in range
el se break /1 ..else done
}
stab(t.left, xq) /1 recurse on left
}
el se { [/ right of nedian
for (i =0; i <t.Mlength; i++) { /'l traverse MR
if (t.MR[i].hi >=xq) print(t.M[i])// ..report if in range
el se break /Il ..else done
}
stab(t.right, xq) /] recurse on right
}
}
Lecture Notes 118 CMSC 754



As mentioned earlier, the time spent processing each na@élis- k') wherek’ is the total number of points
that were recorded at this node. Summing over all nodespthéreporting time i<D(k + v), wherek is the
total number of intervals reported, ands the total number of nodes visited. Since at each node weseon
only one child or the other, the total number of nodes visitézlO (log n), the height of the tree. Thus the total
reporting time isO(k + logn).

Vertical Segment Stabbing Queries:Now let us return to the question that brought us here. Givaat af horizontal
line segments in the plane, we want to know how many of thegmeets intersect a vertical line segment. Our
approach will be exactly the same as in the interval treeggbdor how the elements d@ff (those that intersect
the splitting linex = xmeq) are handled.

Going back to our interval tree solution, let us considergig)/ of horizontal line segments that intersect the
splitting linex = zmeqand as before let us consider the case where the query segmithtendpointsz4, yio)
and (x4, yni) lies to the left of the splitting line. The simple trick of simg the segments ai/ by their left
endpoints is not sufficient here, because we need to corbiglgrcoordinates as well. Observe that a segment
of M stabs the query segmenptif and only if the left endpoint of a segment lies in the foliogy semi-infinite
rectangular region.

{(z,y) | * < zgandyio <y < yni}-
This is illustrated in the figure below. Observe that thisis jan orthogonal range query. (Itis easy to generalize
the procedure given last time to handle semi-infinite regitm) The case wherkglies to the right ofrmeq is
symmetrical.

Fig. 109: The segments that stabie within the shaded semi-infinite rectangle.

So the solution is that rather than storifg;, as a list sorted by the left endpoint, instead we store the lef
endpoints in a 2-dimensional range tree (with cross-limkthe associated segments). Similarly, we create a
range tree for the right endpoints and repregdnt using this structure.

The segment stabbing queries are answered exactly as atmoleef stabbing queries, except that part that
searches\/;, and My (the for-loops) are replaced by searches to the appropaatge tree, using the semi-
infinite range given above.

We will not discuss construction time for the tree. (It candome inO(nlogn) time, but this involves some
thought as to how to build all the range trees efficiently)e Epace needed 3(n logn), dominated primarily
from theO(n log n) space needed for the range trees. The query tif@&fis+log® n), since we need to answer
O(log n) range queries and each takeflog® n) time plus the time for reporting. If we use the spiffy version
of range trees (which we mentioned but never discussedt#meanswer queries if(k + log n) time, then we
can reduce the total time @ (k + log” n).

Lecture 25: Hereditary Segment Trees and Red-Blue Intersection

Red-Blue Segment Intersection:We have been talking about the use of geometric data stescfar solving query
problems. Often data structures are used as intermediatéses for solving traditional input/output problems,
which do not involve preprocessing and queries. (Anothmoias example of this is HeapSort, which introduces
the heap data structure for sorting a list of numbers.) Tadawill discuss a variant of a useful data structure,
thesegment treeThe particular variant is calledrereditary segment tredt will be used to solve the following
problem.

Lecture Notes 119 CMSC 754



Red-Blue Segment Intersection:Given a seBB of m pairwise disjoint “blue” segments in the plane and alget
of n pairwise disjoint “red” segments, count (or report)tzithromatic pairsof intersecting line segments
(that is, intersections between red and blue segments).

It will make things simpler to think of the segments as beipgro(not including their endpoints). In this way,
the pairwise disjoint segments might be the edges of a piraght line graph (PSLG). Indeed, one of the most
important application of red-blue segment intersectiamlves computing the overlay of two PSLG’s (one red
and the other blue) This is also called timap overlay problemand is often used in geographic information
systems. The most time consuming part of the map overlaylgmmois determining which pairs of segments
overlap. See the figure below.

AN

Y [
Y A : f o +

Fig. 110: Red-blue line segment intersection. The algoritutputs the white intersection points between segments
of different colors. The segments of each color are pairdispint (except possibly at their endpoints).

Let N = n 4+ m denote the total input size and ledenote the total number of bichromatic intersecting pairs.
We will present an algorithm for this problem that runglti: + N log® N) time for the reporting problem and
O(N log® N) time for the counting problem. Both algorithms uSéN log N) space. Although we will not
discuss it (but the original paper does) it is possible toaesra factor ofog n from both the running time and
space, using a somewhat more sophisticated variant of gloeithim that we will present.

Because the set of red segments are each pairwise disjoamedke blue segments, it follows that we could
solve the reporting problem by our plane sweep algorithnsémment intersection (as discussed in an earlier
lecture) iNO((N + k) log N) time andO(N) space. Thus, the more sophisticated algorithm is an imprené

on this. However, plane sweep will not allow us to solve thentimg problem.

The Hereditary Segment Tree: Recall that we are given two seisand R, consisting of, respectivelyn andn line
segments in the plane, and [§t= m + n. Let us make the general position assumption tha2ffieendpoints
of these line segments have distinetoordinates. The-coordinates of these endpoints subdivide thaxis
into 2NV + 1 intervals, calledatomic intervals We construct a balanced binary tree whose leaves are in 1-1
correspondence with these intervals, ordered from lefigiat.r Each internal node of this tree is associated
with an intervall,, of the z-axis, consisting of the union of the intervals of its destamnt leaves. We can think
of each such interval as a vertical slshwhose intersection with the-axis isI,,. (See the figure below, left.)

We associate a segmentvith a set of nodes of the tree. A segment is saidganinterval I,, if its projection
covers this interval. We associate a segmenith a nodeu if s spansl,, buts does not spaf,, wherep is u’s
parent. (See the figure above, right.)

Each node (internal or leaf) of this tree is associated wiiktacalled theblue standard listB,, of all blue line
segments whose vertical projection contaipdut does not contaif,, wherep is the parent ofi. Alternately,

if we consider the nodes in whose standard list a segmertrisdstthe intervals corresponding to these nodes
constitute a disjoint cover of the segment’s vertical pcb@n. The node is also associated with a red standard
list, denotedR,,, which is defined analogously for the red segments. (Seegheefbelow, left.)

Each node is also associated with a li€}, called theblue hereditary listwhich is the union of the3,, for
all proper descendentsor u. The red hereditary lisk}; is defined analogously. (Even though a segment may

Lecture Notes 120 CMSC 754



-
—

u

A
A

Fig. 112: Hereditary Segment Tree with standard lists)(kft hereditary lists (right).

occur in the standard list for many descendents, there isam@ copy of each segment in the hereditary lists.)
The segments ok, and B,, are called thdong segmenissince they span the entire interval. The segments of
R andB; are called theshort segmenisince they do not span the entire interval.

By the way, if we ignored the fact that we have two colors ofnsegts and just considered the standard lists,
the resulting tree is calledsegment treeThe addition of the hereditary lists makes thiseaeditary segment
tree Our particular data structure differs from the standandiéary segment tree in that we have partitioned
the various segment lists according to whether the segreeetior blue.

Time and Space Analysis:We claim that the total size of the hereditary segment treé@(i% log N). To see this
observe that each segment is stored in the standard list@dst® log N nodes. The argument is very similar to
the analysis of the 1-dimensional range tree. If you loda¢deft and right endpoints of the segment among the
atomic intervals, these define two paths in the tree. In theesaanner as canonical sets for the 1-dimensional
range tree, the segment will be stored in all the “inner” roldetween these two paths. (See the figure below.)
The segment will also be stored in the hereditary lists fothel ancestors of these nodes. These ancestors lie
along the two paths to the left and right, and hence there tamgoat2log N of them. Thus, each segment
appears in at mostlog N lists, for a total size 0O (N log N).

o hereditary lists containing s

e standard lists containing s

L — ]
S

Fig. 113: Standard and hereditary lists containing a segmen

The tree can be built i® (N log N) time. INO(N log N) time we can sort the N segment endpoints. Then for
each segment, we search for its left and right endpointsresseitithe segment into the standard and hereditary

Lecture Notes 121 CMSC 754



lists for the appropriate nodes and we descend each pétfiintime for each node visited. Since each segment
appears ir0(log N) lists, this will takeO(log N) time per segment and(N log ) time overall.

Computing Intersections: Let us consider how to use the hereditaray segment tree ttt end report bichromatic
intersections. We will do this on a node-by-node basis. @enany node:. We classify the intersections into
two types,Jong-long intersectionare those between a segment®f and R,,, andlong-short intersectionare
those between a segmentBf and R,, or betweenR andB,,. Later we will show that by considering just
these intersection cases, we will consider every inteimeekactly once.

Long-long intersections: Sort each of the list®,, andR,, of long segments in ascending ordernpgoordinate.
(Since the segments of each set are disjoint, this ordenstant throughout the interval for each set.) Let
(b1,ba, ..., by, ) and(ry,ra, ..., ,, ) denote these ordered lists. Merge these lists twice, oramdiag
to their order along the left side of the slab and one accgrttitheir order along the right side of the slab.

Observe that for each blue segmérg B, this allows us to determine two indicésind j, such thab
lies between; andr;;, along the left boundary and betweenandr;,, along the right boundary. (For
convenience, we can think of segment O as an imaginary séghgr= —oco.)

It follows that if i < j thenb intersects the red segmenmis.+, ..., ;. (See the figure below, (a)). On the
other hand, ifi > j thenbd intersects the red segments.;, ..., r;. (See the figure below, (b)). We can
count these intersections (1) time or report them in time proportional to the number of igéetions.
For example, consider the segmeént b, in the figure below, (c). On the left boundary it lies betwegn
andry, and henceé = 3. On the right boundary it lies betweegp andr;, and hencg = 0. (Recall that-

is aty = —o0.) Thus, since > j it follows thatb intersects the three red segmefits, ro, 3}

r.
r_+1 i+1
Jr‘ \ rj+1 ri+l/ .
! b b :
r f
fi+1 ! EI rj+l
b b
I'j-¢-1 I
fi\ml LT
ri I T
@ (b) ©

Fig. 114: Red-blue intersection counting/reporting. Lémgg intersections.

The total time to do this is dominated by tt&ém,, log m,, + n,, logn,,) time needed to sort both lists. The
merging and counting only requires linear time.

Long-short intersections: There are two types of long-short intersections to consldmng red and short blue,
and long blue and short red. Let us consider the first oneg $irecother one is symmetrical.
As before, sort the long segmentsif in ascending order accordinggecoordinate, lettingry, ro, ..., 7, )
denote this ordered list. These segments naturally sudsditie slab inta.,, + 1 trapezoids. For each short
segmenb € B, perform two binary searches among the segmenit3,ofo find the lowest segmenmnt
and the highest segmeny thatb intersects. (See the figure above, right.) Thentersects all the red
Segment&-, TiglyeweyTy
Thus, afterO(logn,,) time for the binary searches, the segment&gfintersectingb can be counted in
O(1) time, for a total time oD (m}; logn,,). Reporting can be done in time proportional to the number of
intersections reported. Adding this to the time for the Itahge and short red case, we have a total time
complexity ofO(m? log n, + n¥ logmy,).

If we let N, = m, + n, + m, + n}, then observe that the total time to process vettéx O(N, log N,,)
time. Summing this over all nodes of the tree, and recallieg} ©,, N, = O(N log N) we have a total time

Lecture Notes 122 CMSC 754



| 4 |

Fig. 115: Red-blue intersection counting/reporting: Lexprt intersections.

complexity of

T(N) = ZNulogNu < (ZNU> 1OgN = O(NlOgQN)

Correctness: To show that the algorithm is correct, we assert that eadirdacatic intersection is counted exactly
once. For any bichromatic intersection betwégandr; consider the leaf associated with the atomic interval
containing this intersection point. As we move up to the atars of this leaf, we will encountér; in the
standard list of one of these ancestors, denatednd will encounter-; at some node, denoted. If u; = u;
then this intersection will be detected as a long-long s#etion at this node. Otherwise, one is a proper ancestor
of the other, and this will be detected as a long-short ietetign (with the ancestor long and descendent short).

Lecture 26: Kirkpatrick's Planar Point Location

Point Location: The point location problem(in 2-space) is: given a polygonal subdivision of the plathmat(is, a
PSLG) withn vertices, preprocess this subdivision so that given a gpeiryt ¢, we can efficiently determine
which face of the subdivision contaips We may assume that each face has some identifying labethvigto
be returned. We also assume that the subdivision is refgessanany “reasonable” form (e.g. as a DCEL). In
generalg may coincide with an edge or vertex. To simplify matters, wk assume that; does not lie on an
edge or vertex, but these special cases are not hard to handle

It is remarkable that although this seems like such a simpteratural problem, it took quite a long time to
discover a method that is optimal with respect to both quemg tand space. It has long been known that
there are data structures that can perform these searcssmably well (e.g. quad-trees and kd-trees), but for
which no good theoretical bounds could be proved. There dai@ structures of witth (log n) query time but
O(nlogn) space, and(n) space buO(log” n) query time.

The first construction to achieve bath{n) space an@ (log n) query time was a remarkably clever construction
due to Kirkpatrick. It turns out that Kirkpatrick's idea hasme large embedded constant factors that make it
less attractive practically, but the idea is so clever thigtworth discussing, nonetheless. Later we will discuss
a more practical randomized method that is presented ineatir t

Kirkpatrick’s Algorithm:  Kirkpatrick’s idea starts with the assumption that the plagsubdivision is a triangulation,
and further that the outer face is a triangle. If this assiongs not met, then we begin by triangulating all the
faces of the subdivision. The label associated with eaahdrilar face is the same as a label for the original face
that contained it. For the outer face is not a triangle, fioshpute the convex hull of the polygonal subdivision,
triangulate everything inside the convex hull. Then suntbthis convex polygon with a large triangle (call the
verticesa, b, andc), and then add edges from the convex hull to the verticeseo€tmvex hull. It may sound
like we are adding a lot of new edges to the subdivision, beallérom earlier in the semester that the number
of edges and faces in any straight-line planar subdivisgraportional ta:, the number of vertices. Thus the
addition only increases the size of the structure by a cahfator.

Lecture Notes 123 CMSC 754



Note that once we find the triangle containing the query poinhe augmented graph, then we will know the
original face that contains the query point. The triangalaprocess can be performed@r{nlogn) time by a
plane sweep of the graph, or@(n) time if you want to use sophisticated methods like the liriieae polygon
triangulation algorithm. In practice, many straight-lisighdivisions, may already have convex faces and these
can be triangulated easily in(n) time.

Fig. 116: Triangulation of a planar subdivision.

Let T, denote the initial triangulation. What Kirkpatrick’s methdoes is to produce a sequence of triangula-
tions, Ty, 11, 1>, . . ., T, wherek = O(log n), such thafl};, consists only of a single triangle (the exterior face
of Ty), and each triangle ifi; ; overlaps a constant number of trianglegin

We will see how to use such a structure for point location ggdater, but for now let us concentrate on how
to build such a sequence of triangulations. Assuming thahaweT;, we wish to computd’; ;. In order to
guarantee that this process will terminate afiéiogn) stages, we will want to make sure that the number of
vertices inT;; decreases by some constant factor from the number of v&iiticE. In particular, this will

be done by carefully selecting a subset of vertice$;adnd deleting them (and along with them, all the edges
attached to them). After these vertices have been deletediesd retriangulate the resulting graph to form
T;+1. The question is: How do we select the vertice§'pfo delete, so that each triangleBf, ; overlaps only

a constant number of trianglesn?

There are two things that Kirkpatrick observed at this pdhmt make the whole scheme work.

Constant degree: We will make sure that each of the vertices that we delete bamstant £ d) degree (that
is, each is adjacent to at masedges). Note that the when we delete such a vertex, theiresidtle will
consist of at most — 2 triangles. When we retriangulate, each of the new triangkas overlap at most
triangles in the previous triangulation.

Independent set: We will make sure that no two of the vertices that are deletedaajacent to each other,
that is, the vertices to be deleted formiadependent seh the current planar graph;. This will make
retriangulation easier, because when we remavindependent vertices (and their incident edges), we
createm independenholes(non triangular faces) in the subdivision, which we will baw retriangulate.
However, each of these holes can be triangulated indeptnadéione another. (Since each hole contains
a constant number of vertices, we can use any triangulakijmignm, even brute force, since the running
time will be O(1) in any case.)

An important question to the success of this idea is whetlgecan always find a sufficiently large independent
set of vertices with bounded degree. We want the size of #titosoe at least a constant fraction of the current
number of vertices. Fortunately, the answer is “yes,” arfadhit is quite easy to find such a subset. Part of the
trick is to pick the value ofl to be large enough (too small and there may not be enough mftHeturns out
thatd = 8 is good enough.

Lemma: Given a planar graph with vertices, there is an independent set consisting of verti€elegree at
most 8, with at least /18 vertices. This independent set can be constructe&d(in) time.

We will present the proof of this lemma later. The number 18t rather large. The number is probably
smaller in practice, but this is the best bound that this pgemerates. However, the size of this constant is
one of the reasons that Kirkpatrick’s algorithm is not usegbriactice. But the construction is quite clever,
nonetheless, and once a optimal solution is known to a pmolilés often not long before a practical optimal
solution follows.

Lecture Notes 124 CMSC 754



Kirkpatrick Structure:  Assuming the above lemma, let us give the description of @\pbint location data struc-
ture, theKirkpatrick structure is constructed. We start withy, and repeatedly select an independent set of
vertices of degree at most 8. We never include the threecesttj b, andc (forming the outer face) in such an
independent set. We delete the vertices from the indepésdefrom the graph, and retriangulate the resulting
holes Observe that each triangle in the new triangulation caml@aweat most 8 triangles in the previous trian-
gulation. Since we can eliminate a constant fraction ofieestwith each stage, aftél(logn) stages, we will
be down to the last 3 vertices.

The constant factors here are not so great. With each stegeutnber of vertices falls by a factor Bf/18. To
reduce to the final three vertices, implies thet/17)* = n or that

k =logig/17n =~ 121gn.

It can be shown that by always selecting the vertex of sntadlegree, this can be reduced to a more palatable
4.51gn.

The data structure is based on this decomposition. The fdbeatructure corresponds to the single triangle
of Ti. The nodes at the next lower level are the triangle$,af;, followed by T}, _», until we reach the leaves,
which are the triangles of our initial triangulatioiy. Each node for a triangle in triangulatidr,, stores
pointers to all the triangles it overlapsn (there are at most 8 of these). Note that this structure iseztaid
acyclic graph (DAG) and not a tree, because one triangle raag many parents in the data structure. This is
shown in the following figure.

Fig. 117: Kirkpatrick’s point location structure.

To locate a point, we start with the rodf,. If the query point does not lie within this single triangleen we
are done (it lies in the exterior face). Otherwise, we seagdh of the (at most 8) trianglesTi_, that overlap
this triangle. When we find the correct one, we search eachedfingles in7_» that overlap this triangles,
and so forth. Eventually we will find the triangle containihg query point in the last triangulatidfy, and this
is the desired output. See the figure below for an example.

Lecture Notes 125 CMSC 754



Fig. 118: Point location search.

Construction and Analysis: The structure ha®(log n) levels (one for each triangulation), it takes a constantaro
of time to move from one level to the next (at most 8 pointriaftgle tests), thus the total query tim&liglog n).
The size of the data structure is the sum of sizes of the tilatigns. Since the number of triangles in a
triangulation is proportional to the number of verticedpltows that the size is proportional to

n(l+17/18 + (17/18)% 4 (17/18)% +...) < 18n,
(using standard formulas for geometric series). Thus tie staucture size i®(n) (again, with a pretty hefty
constant).
The last thing that remains is to show how to construct thepeddent set of the appropriate size. We first
present the algorithm for finding the independent set, aed fitove the bound on its size.
(1) Mark all nodes of degree 9.

(2) While there exists an unmarked node do the following:

(a) Choose an unmarked vertex
(b) Addw to the independent set.
(c) Markwv and all of its neighbors.

It is easy to see that the algorithm runstin) time (e.g., by keeping unmarked vertices in a stack and repre
senting the triangulation so that neighbors can be founckdyu)

Intuitively, the argument that there exists a large indeleen set of low degree is based on the following simple

observations. First, because the average degree in a gleapdr is less than 6, there must be a lot of vertices of
degree at most 8 (otherwise the average would be unattain@#cond, whenever we add one of these vertices
to our independent set, only 8 other vertices become iddidor inclusion in the independent set.

Here is the rigorous argument. Recall from Euler’s formtiat if a planar graph is fully triangulated, then the
number of edges satisfiese = 3n — 6. If we sum the degrees of all the vertices, then each edgeuisted
twice. Thus the average degree of the graph is

> " deg(v) = 2e = 6n — 12 < 6n.

Next, we claim that there must be at leag® vertices of degree 8 or less. To see why, suppose to the cpntra
that there were more thary2 vertices of degree 9 or greater. The remaining vertices gt degree at least

Lecture Notes 126 CMSC 754



3 (with the possible exception of the 3 vertices on the owtee), and thus the sum of all degrees in the graph
would have to be at least as large as

n n
92 432 _¢
g T9g =om,

which contradicts the equation above.

Now, when the above algorithm starts execution, at leg8tvertices are initially unmarked. Whenever we
select such a vertex, because its degree is 8 or fewer, weaharkst 9 new vertices (this node and at most 8
of its neighbors). Thus, this step can be repeated at(e#8)/9 = n/18 times before we run out of unmarked
vertices. This completes the proof.

Lecture 27: Divide-and-Conquer Algorithm for Voronoi Diagrams

Planar Voronoi Diagrams: Recall that, givem pointsP = {p1,ps, ..., p,} in the plane, the Voronoi polygon of a
pointp;, V(p;), is defined to be the set of all poinisn the plane for whiclp; is among the closest points ¢o
in P. That is,

Vpi)={q : lpi—al <lp; —al,Vj #i}.

The union of the boundaries of the Voronoi polygons is calfexi/oronoi diagramof P, denoted/ D(P). The
dual of the Voronoi diagram is a triangulation of the poirt; salled theDelaunay triangulation Recall from

our discussion of quad-edge data structure, that given @ gggwesentation of any planar graph, the dual is easy
to construct. Hence, it suffices to show how to compute eitherof these structures, from which the other can
be derived easily il0(n) time.

There are four fairly well-known algorithms for computingr@noi diagrams and Delaunay triangulations in
the plane. They are

Divide-and-Conquer: (For both VD and DT.) The firaD (n log n) algorithm for this problem. Not widely used
because it is somewhat hard to implement. Can be generatizégher dimensions with some difficulty.
Can be generalized to computing Vornoi diagrams of line ssdewith some difficulty.

Randomized Incremental: (For DT and VD.) The simplestO(nlogn) time with high probability. Can be
generalized to higher dimensions as with the randomizeatigtgn for convex hulls. Can be generalized
to computing Voronoi diagrams of line segments fairly gasil

Fortune’s Plane Sweep:(For VD.) A very clever and fairly simple algorithm. It comigs a “deformed”
Voronoi diagram by plane sweep @»(n log n) time, from which the true diagram can be extracted easily.
Can be generalized to computing Voronoi diagrams of linersags fairly easily.

Reduction to convex hulls: (For DT.) Computing a Delaunay triangulation @fpoints in dimensioni can
be reduced to computing a convex hull»efpoints in dimensioni + 1. Use your favorite convex hull
algorithm. Unclear how to generalize to compute Voronogdians of line segments.

We will cover all of these approaches, except Fortune’srétyn. O’'Rourke does not give detailed explanations
of any of these algorithms, but he does discuss the idea é&lirtune’s algorithm. Today we will discuss the
divide-and-conquer algorithm. This algorithm is presdriteMulmuley, Section 2.8.4.

Divide-and-conquer algorithm: The divide-and-conquer approach works like most standeotngtric divide-and-
conquer algorithms. We split the points according:tooordinates into 2 roughly equal sized groups (e.g. by
presorting the points by-coordinate and selecting medians). We compute the Vodiagram of the left side,
and the Voronoi diagram of the right side. Note that sincénei@gram alone covers the entire plane, these two
diagrams overlap. We then merge the resulting diagramsaistngle diagram.

The merging step is where all the work is done. Observe thatyepoint in the the plane lies within two
Voronoi polygons, one iv D(L) and one iV D(R). We need to resolve this overlap, by separating overlapping
polygons. Lef/(ly) be the Voronoi polygon for a point from the left side, andiét) be the Voronoi polygon

Lecture Notes 127 CMSC 754



for a point on the right side, and suppose these polygondaprene another. Observe that if we insert the
bisector betweety, andry, and through away the portions of the polygons that lie or'tfreng” side of the
bisector, we resolve the overlap. If we do this for every péioverlapping Voronoi polygons, we get the final
Voronoi diagram. This is illustrated in the figure below.

Final Voronoi Diagram

Fig. 119: Merging Voronoi diagrams.

The union of these bisectors that separate the left Voraagrdm from the right Voronoi diagram is called the
contour. A point is on the contour if and only if it is equidistant fra2mpoints inS, one inL and one inR.
(0) Presort the points hy-coordinate (this is done once).
(1) Split the point sefb by a vertical line into two subsefsand R of roughly equal size.
(2) ComputeV' D(L) andV D(R) recursively. (These diagrams overlap one another.)
(3) Merge the two diagrams into a single diagram, by computiecontourand discarding the portion of the
V D(L) that is to the right of the contour, and the portioni@D (R) that is to the left of the contour.

Assuming we can implement step (3) @n) time (wheren is the size of the remaining point set) then the
running time will be defined by the familiar recurrence

T(n) =2T(n/2) + n,
which we know solves t®(n logn).

Computing the contour: What makes the divide-and-conquer algorithm somewhatigcthe task of computing the
contour. Before giving an algorithm to compute the conttainis make some observations about its geomtetric
structure. Let us make the usual simplifying assumptioastib 4 points are cocircular.

Lemma: The contour consists of a single polygonal curve (whosedidtlast edges are semiinfinite) which is
monotone with respect to theaxis.

Proof: A detailed proof is a real hassle. Here are the main ideasgthoThe contour separates the plane into
two regions, those points whose nearest neighbor lidsfimm those points whose nearest neighbor lies
in R. Because the contour locally consists of points that arédexiant from 2 points, it is formed from
pieces that are perpendicular bisectors, with one poimh ffoand the other point fron. Thus, it is a

Lecture Notes 128 CMSC 754



piecewise polygonal curve. Because no 4 points are coaircitiffollows that all vertices in the Voronoi
diagram can have degree at most 3. However, because theicepfrarates the plane into only 2 types of
regions, it can contain only vertices of degree 2. Thus itaamsist only of the disjoint union of closed
curves (actually this never happens, as we will see) andundexl curves. Observe that if we orient the
contour counterclockwise with respect to each poinRifclockwise with respect to each pointir), then
each segment must be directed in thgdirections, because andR are separated by a vertical line. Thus,
the contour contains no horizontal cusps. This implies ti@icontour cannot contain any closed curves,
and hence contains only vertically monotone unboundedesurilso, this orientability also implies that
there is only one such curve.

Lemma: The topmost (bottommost) edge of the contour is the perpatatibisector for the two points forming
the upper (lower) tangent of the left hull and the right hull.

Proof: This follows from the fact that the vertices of the hull capend to unbounded Voronoi polygons, and
hence upper and lower tangents correspond to unboundesd efitie contour.

These last two theorem suggest the general approach. Westammputing the upper tangent, which we know
can be done in linear time (once we know the left and rightsholt by prune and search). Then, we start tracing
the contour from top to bottom. When we are in Voronoi polygdf($,) and V (ry) we trace the bisector
between, andr in the negative/-direction until its first contact with the boundaries of aféhese polygons.
Suppose that we hit the boundary6fly) first. Assuming that we use a good data structure for the \d@ron
diagram (e.g. quad-edge data structure) we can determeroihtl; lying on the other side of this edge in the
left Voronoi diagram. We continue following the contour bgding the bisector af, andr.

However, in order to insure efficiency, we must be carefuldw lve determine where the bisector hits the edge
of the polygon. Consider the figure shown below. We stariricathe contour betweely andry. By walking
along the boundary df (Iy) we can determine the edge that the contour would hit firsts €an be done in
time proportional to the number of edgesliiily) (which can be as large &%(n)). However, we discover that
before the contour hits the boundary¥6fiy) it hits the boundary o¥ (). We find the new point; and now
trace the bisector betweénandr,. Again we can compute the intersection with the boundary @§) in time
proportional to its size. However the contour hits the bamaf V' (r;) first, and so we go on te,. As can be
seen, if we are not smart, we can rescan the bounddry(igh over and over again, until the contour finally hits
the boundary. If we do thi®(n) times, and the boundary &f(ly) is O(n), then we are stuck witth(n?) time

to trace the contour.

Fig. 120: Tracing the contour.

We have to avoid this repeated rescanning. However, themeniay to scan the boundary of each Voronoi
polygon at most once. Observe that as we walk along the coréach time we stay in the same polygon
V(ly), we are adding another edge onto its Voronoi polygon. Bexthes\Voronoi polygon is convex, we know
that the edges we are creating turn consistently in the sareetidn (clockwise for points on the left, and
counterclockwise for points on the right). To test for isgstions between the contour and the current Voronoi
polygon, we trace the boundary of the polygon clockwise faygons on the left side, and counterclockwise
for polygons on the right side. Whenever the contour changestin, we continue the scan from the point
that we left off. In this way, we know that we will never needréscan the same edge of any Voronoi polygon
more than once.

Lecture Notes 129 CMSC 754



Lecture 28: Delaunay Triangulations and Convex Hulls

Delaunay Triangulations and Convex Hulls: At first, Delaunay triangulations and convex hulls appeardauite
different structures, one is based on metric propertiestgdces) and the other on affine properties (collinearity,
coplanarity). Today we show that it is possible to conveet phoblem of computing a Delaunay triangulation
in dimensiond to that of computing a convex hull in dimensidnt+ 1. Thus, there is a remarkable relationship
between these two structures.

We will demonstrate the connection in dimension 2 (by conmgua convex hull in dimension 3). Some of
this may be hard to visualize, but see O’Rourke for illustrag. (You can also reason by analogy in one lower
dimension of Delaunay triangulations in 1-d and convexsull2-d, but the real complexities of the structures
are not really apparent in this case.)

The connection between the two structures isgamboloid z = 22 + 32. Observe that this equation defines
a surface whose vertical cross sections (constaot constanty) are parabolas, and whose horizontal cross
sections (constant) are circles. For each point in the plarie, y), the vertical projectionof this point onto
this paraboloid iz, y, 72 + 3?) in 3-space. Given a set of poingsin the plane, letS’ denote the projection
of every point inS onto this paraboloid. Consider th@mver convex hulbf S’. This is the portion of the convex
hull of S” which is visible to a viewer standing at= —oco. We claim that if we take the lower convex hull of
S’, and project it back onto the plane, then we get the Delautaygulation ofS. In particular, lep, g, € S,

and letp’, ¢/, ' denote the projections of these points onto the paraboldidny’¢’'r’ define efaceof the lower
convex hull ofS’ if and only if Apgr is a triangle of the Delaunay triangulation 8f The process is illustrated
in the following figure.

Project onto paraboloid. Compute convex hull. Project hull faces back to plane.
Fig. 121: Delaunay triangulations and convex hull.

The question is, why does this work? To see why, we need tblesdtahe connection between the triangles of
the Delaunay triangulation and the faces of the convex liatbmsformed points. In particular, recall that

Delaunay condition: Three pointy, ¢,r € S form a Delaunay triangle if and only if the circumcircle oktde
points contains no other point 6f

Convex hull condition: Three pointg’, ¢, ' € S’ form a face of the convex hull & if and only if the plane
passing through’, ¢’, andr’ has all the points of’ lying to one side.

Clearly, the connection we need to establish is betweentitiress of circumcircles in the plane and the
emptiness of halfspaces in 3-space. We will prove the fofigvelaim.

Lemma: Consider 4 distinct points, ¢, r, s in the plane, and lef’, ¢/, r’, s’ be their respective projections onto
the paraboloidz = 22 + 3. The points lies within the circumcircle of, ¢, r if and only if s’ lies on the
lower side of the plane passing throughq’, r’.

To prove the lemma, first consider an arbitrary (nonvertipine in 3-space, which we assume is tangent to
the paraboloid above some pofft b) in the plane. To determine the equation of this tangent plaectake

Lecture Notes 130 CMSC 754



derivatives of the equation= z2 + y? with respect tar andy giving

0z 0z
— =2 — = 2.
Ox “ oy 4
At the point(a, b, a? + b?) these evaluate t2z and2b. It follows that the plane passing through these point has
the form
z = 2ax + 2by + 7.

To solve fory we know that the plane passes throughb, a? + b%) so we solve giving
a2 +b*=2a-a+2b-b+~,

Implying thaty = —(a? + b2). Thus the plane equation is
z = 2ax + 2by — (a® + b?).

If we shift the plane upwards by some positive amatinive get the plane

z = 2ax + 2by — (a® + b%) + 2.

How does this plane intersect the paraboloid? Since théphmid is defined by = x2 + y? we can eliminate
z giving
22 + 9% = 2ax + 2by — (a® + b?) + 72,

which after some simple rearrangements is equal to
(v —a)? +(y = b)* =2

This is just a circle. Thus, we have shown that the intersaaif a plane with the paraboloid produces a space
curve (which turns out to be an ellipse), which when projédtack onto théz, y)-coordinate plane is a circle
centered afa, b).

Thus, we conclude that the intersection of an arbitrary tdvedfspace with the paraboloid, when projected onto
the (z, y)-plane is the interior of a circle. Going back to the lemmagewlve project the points, ¢, onto
the paraboloid, the projected points ¢’ andr’ define a plane. Sincg, ¢/, andr’, lie at the intersection of
the plane and paraboloid, the original poiptg, » lie on the projected circle. Thus this circle is the (unique)
circumcircle passing through theggg, andr. Thus, the poing lies within this circumcircle, if and only if its
projections’ onto the paraboloid lies within the lower halfspace of trempl passing through g, .

Fig. 122: Planes and circles.

Now we can prove the main result.

Theorem: Given a set of point§' in the plane (assume no 4 are cocircular), and given 3 ppints- € S, the
triangle Apgr is a triangle of the Delaunay triangulation §fif and only if triangleAp’¢’r’ is a face of
the lower convex hull of the projected s&t

Lecture Notes 131 CMSC 754



From the definition of Delaunay triangulations we know thaigr is in the Delaunay triangulation if and only
if there is no points € S that lies within the circumcircle gfgr. From the previous lemma this is equivalent to
saying that there is no poigt that lies in the lower convex hull &8’, which is equivalent to saying thatq’r’

is a face of the lower convex hull. This completes the proof.

In order to test whether a poigtlies within the circumcircle defined by, ¢, r, it suffices to test whether
lies within the lower halfspace of the plane passing thropgh',’. If we assume thap, ¢, r are oriented
counterclockwise in the plane this this reduces to detengiwhether the quadruplé, ¢’, ', s’ is positively
oriented, or equivalently whethedies to the left of the oriented circle passing through, r.

This leads to the incircle test we presented last time.

px Py Pi+ p;,
Gx @ G+ 0y
Ty Ty 7“320 + Ty
Sy Sy SEH si

in(p,q,r,s) = det > 0.

—_ = = =

Voronoi Diagrams and Upper Envelopes: We know that Voronoi diagrams and Delaunay triangulatiomes cual
geometric structures. We have also seen (informally) tiexetis a dual relationship between points and lines in
the plane, and in general, points and planes in 3-space. fhistatter connection we argued that the problems
of computing convex hulls of point sets and computing thersgction of halfspaces are somehow “dual” to
one another. It turns out that these two notions of dualigy,(aot surprisingly) interrelated. In particular, in the
same way that the Delaunay triangulation of points in theg@lzan be transformed to computing a convex hull
in 3-space, it turns out that the Voronoi diagram of pointthie plane can be transformed into computing the
intersection of halfspaces in 3-space.

Here is how we do this. For each pomt= (a,b) in the plane, recall the tangent plane to the paraboloid@bov
this point, given by the equation
z = 2ax + 2by — (a® + V7).

Define H (p) to be the set of points that are above this halfplane, thatis(p) = {(z,y,2) | 2 > 2ax +

20y — (a® + b*)}. LetS = {p1,p2,...,pn} be a set of points. Consider the intersection of the halfspac
H™(p;). This is also called thepper envelop®f these halfspaces. The upper envelope is an (unbounded)
convex polyhedron. If you project the edges of this uppeekpe down into the plane, it turns out that you get
the Voronoi diagram of the points.

Theorem: Given a set of point$' in the plane (assume no 4 are cocircular) Hetlenote the set of upper half-
spaces defined by the previous transformation. Then thendohagram ofH is equal to the projection
onto the(z, y)-plane of the 1-skeleton of the convex polyhedron which isnfed from the intersection of
halfspaces of’.

Fig. 123: Intersection of halfspaces.

It is hard to visualized this surface, but it is not hard towlvehy this is so. Suppose we have 2 points in the
plane,p = (a,b) andg = (¢, d). The corresponding planes are:

z = 2ax + 2by — (a* + b?) and  z=2cx +2dy — (* + d?).

Lecture Notes 132 CMSC 754



If we determine the intersection of the corresponding paared project onto thér, y)-coordinate plane (by
eliminatingz from these equations) we get

x(2a — 2¢) +y(2b — 2d) = (a* — %) + (b* — d?).

We claim that this is the perpendicular bisector betwged) and(c,d). To see this, observe that it passes
through the midpoint(a + ¢)/2, (b + d)/2) between the two points since

1220 20) + #(% 9d) = (a% — &) + (% — d?).

and, its slope is-(a — ¢) /(b —d), which is the negative reciprocal of the line segment f(anb) to (¢, d). From
this it can be shown that the intersection of the upper hatfep defines a polyhedron whose edges project onto
the Voronoi diagram edges.

Lecture 29: Topological Plane Sweep

Topological Plane Sweep:In the last two lectures we have introduced arrangementsaed bnd geometric duality
as important tools in solving geometric problems on lined paints. Today give an efficient algorithm for
sweeping an arrangement of lines.

As we will see, many problems in computational geometry carsddved by applying line-sweep to an ar-
rangement of lines. Since the arrangement has@izé&), and since there ar@(n?) events to be processed,
each involving arO(log n) heap deletion, this typically leads to algorithms runnin@jin? log n) time, using
O(n?) space. It is natural to ask whether we can dispense with ttigi@ehl O(log n) factor in running time,
and whether we need all 6#(n?) space (since in theory we only need access to the cutrém} contents of
the sweep line).

We discuss a variation of plane sweep caliepological plane sweepThis method runs iD(n?) time, and
uses onlyO(n) space (by essentially constructing only the portion of thersgement that we need at any point).
Although it may appear to be somewhat sophisticated, it esimplemented quite efficiently, and is claimed to
outperform conventional plane sweep on arrangements adignificant size (e.g. over 20 lines).

Cuts and topological lines: The algorithm is calletlbpologicalplane sweep because we do not sweep a straight ver-
tical line through the arrangement, but rather we sweep\aedtiopological linethat has the essential properties
of a vertical sweep line in the sense that this line intesseath line of the arrangement exactly once. The notion
of a topological line is an intuitive one, but it can be maderfal in the form of something calledaut Recall
that the faces of the arrangement are convex polygons {gpssibounded). (Assuming no vertical lines) the
edges incident to each face can naturally be partitionedtlve edges that aebovethe face, and those that are
belowthe face. Define autin an arrangement to be a sequence of edggs, . . ., ¢,, in the arrangement, one
taken from each line of the arrangement, such that fari < n — 1, ¢; andc; 1, are incident to the same face
of the arrangement, and is above the face and, ; is below the face. An example of a topological line and
the associated cut is shown below.

cl

Fig. 124: Topological line and associated cut.

The topological plane sweep starts atligfgmost cubf the arrangement. This consists of all the left-unbounded
edges of the arrangement. Observe that this cut can be cethi®(n log n) time, because the lines intersect
the cut in inverse order of slope. The topological sweep Viile sweep to the right until we come to the

Lecture Notes 133 CMSC 754



rightmost cut, which consists all of the right-unboundedestof the arrangement. The sweep line advances by
a series of what are calleslementary stepdn an elementary steps, we find two consecutive edges oruthe ¢
that meet at a vertex of the arrangement (we will discuss hader to determine this), and push the topological
sweep line through this vertex. Observe that on doing scethes lines swap in their order along the sweep

line. This is shown below.

Fig. 125: Elementary step.

It is not hard to show that an elementary step is always plessimce for any cut (other than the rightmost cut)
there must be two consecutive edges with a common right émidgo particular, consider the edge of the cut
whose right endpoint has the smallestoordinate. It is not hard to show that this endpoint wivays allow
an elementary step. Unfortunately, determining this wewteuld require at leasb(logn) time (if we stored
these endpoints in a heap, sortedibgoordinate), and we want to perform each elementary stéf{in time.
Hence, we will need to find some other method for finding elaargrsteps.

Upper and Lower Horizon Trees: To find elementary steps, we introduce two simple data strast theupper hori-
zon tree(UHT) and thelower horizon tregLHT). To construct the upper horizon tree, trace each eddgleeo
cut to the right. When two edges meet, keep only the one witlhigdjteer slope, and continue tracing it to the
right. The lower horizon tree is defined symmetrically. Thex one little problem in these definitions in the
sense that these trees need not be connected (forming adbeses) but this can be fixed conceptually at least
by the addition of a vertical line at = +o00. For the upper horizon we think of its slope as being> and for
the lower horizon we think of its slope as beirgo. Note that we consider the left endpoints of the edges of
the cut as not belonging to the trees, since otherwise theydwwt be trees. It is not hard to show that with
these modifications, these are indeed trees. Each edge difttdefines exactly one line segment in each tree.
An example is shown below.

Upper Horizon Tree‘ Lower Horizon Tree
Fig. 126: Upper and lower horizon trees.

The important things about the UHT and LHT is that they givan®asy way to determine the right endpoints
of the edges on the cut. Observe that for each edge in thetsuiglht endpoint results from a line of smaller
slope intersecting it from above (as we trace it from leftight) or from a line of larger slope intersecting it
from below. It is easy to verify that the UHT and LHT determthe first such intersecting line of each type,
respectively. It follows that if we intersect the two tred®en the segments they share in common correspond
exactly to the edges of the cut. Thus, by knowing the UHT and ,Live know where are the right endpoints
are, and from this we can determine easily which pairs of eomsve edges share a common right endpoint,
and from this we can determine all the elementary steps thdegal. We store all the legal steps in a stack (or
queue, or any list is fine), and extract them one by one.

The sweep algorithm: Here is an overview of the topological plane sweep.

(1) Input the lines and sort by slope. L&tbe the initial (leftmost) cut, a list of lines in decreasingler of
slope.

Lecture Notes 134 CMSC 754



(2) Create the initial UHT incrementally by inserting linesdecreasing order of slope. Create the initial LHT
incrementally by inserting line in increasing order of gofMore on this later.)

(3) By consulting the LHT and UHT, determine the right endp®iof all the edges of the initial cut, and for
all pairs of consecutive lingg;, l;+1) sharing a common right endpoint, store this pair in stéick

(4) Repeat the following elementary step until the stacknipty (implying that we have arrived at the right-
most cut).

(a) Pop the paifl;, l;+1) from the top of the stack.
(b) Swap these lines withi@', the cut (we assume that each line keeps track of its posititire cut).
(c) Update the horizon trees. (More on this later.)

(d) Consulting the changed entries in the horizon tree,raete whether there are any new cut edges
sharing right endpoints, and if so push them on the sfack

The important unfinished business is to show that we can biddnitial UHT and LHT inO(n) time, and

to show that, for each elementary step, we can update these and all other relevant information @n(1)
amortized timeBy amortized timeve mean that, even though a single elementary step can talesthamO (1)
time, the total time needed to perform @(n?) elementary steps 9(n?), and hence the average time for each
step isO(1).

This is done by an adaptation of the same incremental “fadkingd technique we used in the incremental
construction of line arrangements. Let’s consider justthf, since the LHT is symmetric. To create the initial
(leftmost) UHT we insert the lines one by one in decreasirgoof slope. Observe that as each new line is
inserted it will start above all of the current lines. The eppost face of the current UHT consists of a convex
polygonal chain, see the figure below left. As we trace thelyaveerted line from left to right, there will be
some point at which it first hits this upper chain of the cuttdriT. By walking along the chain from left to
right, we can determine this intersection point. Each seqgriat is walked over is never visited again by this
initialization process (because it is no longer part of thpar chain), and since the initial UHT has a total of
O(n) segments, this implies that the total time spent in walks@(n). Thus, after theD(nlogn) time for
sorting the segments, the initial UHT tree can be builDin) additional time.

new line

Initial UHT construction.  Updating the UHT.
Fig. 127: Constructing and updating the UHT.

Next we show how to update the UHT after an elementary step. prbcess is quite similar, as shown in the
figure right. Letv be the vertex of the arrangement which is passed over in teesstep. As we pass over
the two edges swap positions along the sweep line. The neerletge, call it, which had been cut off of the
UHT by the previous lower edge, now must be reentered inttrége We extendto the left until it contacts an
edge of the UHT. At its first contact, it will terminate (andgls the only change to be made to the UHT). In
order to find this contact, we start with the edge immedidtelpw! the current cut. We traverse the face of the
UHT in counterclockwise order, until finding the edge thas ime intersects. Observe that we must eventually
find such an edge becausieas a lower slope than the other edge intersectingatd this edge lies in the same
face.

Analysis: A careful analysis of the running time can be performed usiegsame amortization proof (based on pebble
counting) that was used in the analysis of the incremengalrdhm. We will not give the proof in full detail.
Observe that because we maintain the set of legal elemestipy in a stack (as opposed to a heap as would

Lecture Notes 135 CMSC 754



be needed for standard plane sweep), we can advance to thelementary step if)(1) time. The only part
of the elementary step that requires more than constantisirttee update operations for the UHT and LHT.
However, we claim that the total time spent updating thesestisO(n?). The argument is that when we are
tracing the edges (as shown in the previous figure) we arenésadly” traversing the edges in tlz@nefor L in
the arrangement. (This is not quite true, because theredgeseabové in the arrangement, which have been
cut out of the upper tree, but the claim is that their abseaomat increase the complexity of this operation,
only decrease it. However, a careful proof needs to takeitibisaccount.) Since the zone of each line in
the arrangement has complexi®(n), all n zones have total complexit(n?). Thus, the total time spent in
updating the UHT and LHT trees @(n?).

Lecture 30: Ham-Sandwich Cuts

Ham Sandwich Cuts of Linearly Separated Point Sets:We are givenn red pointsA, andm blue pointsB, and
we want to compute a single line that simultaneously biskeoth sets. (If the cardinality of either set is odd,
then the line passes through one of the points of the set.) &¥e e simplifying assumption that the sets are
separated by a line. (This assumption makes the problem singiier to solve, but the general case can still
be solved in0(n?) time using arrangements.)

To make matters even simpler we assume that the points havettanslated and rotated so this line is the
axis. Thus all the red points (sd) have positiver-coordinates, and hence their dual lines have positiveeslop
whereas all the blue points (sB) have negative-coordinates, and hence their dual lines have negativeslop
As long as we are simplifying things, let's make one last dification, that both sets have an odd number of
points. This is not difficult to get around, but makes theymes a little easier to understand.

Consider one of the sets, say Observe that for each slope there exists one way to bisegbamts. In
particular, if we start a line with this slope at positive iify, so that all the points lie beneath it, and drop in
downwards, eventually we will arrive at a unique placemeimere there are exactly. — 1)/2 points above the
line, one point lying on the line, an@ — 1)/2 points below the line (assuming no two points share thisejlop
This line is called thenedian linefor this slope.

What is the dual of this median line? If we dualize the poiniagishe standard dual transformatidR(a, b) :

y = ax —b, then we get lines in the plane. By starting a line with a given slope alitegpoints and translating

it downwards, in the dual plane we moving a point frerso upwards in a vertical line. Each time the line passes
a point in the primal plane, the vertically moving point ges a line in the dual plane. When the translating line
hits the median point, in the dual plane the moving point hitlla dual line such that there are exadthy— 1) /2
dual lines above this point ari@. — 1)/2 dual lines below this point. We define a point to bdeael %, Ly, in

an arrangement if there are at maést 1 lines above this point and at mast— k lines below this point. The
median level in an arrangementmofines is defined to be thgn — 1)/2]-th level in the arrangement. This is
shown asM/ (A) in the following figure on the left.

M(B)

M(A) M(A) Ham sandwich point
Dual arrangement of A.  Overlay of A and B’s median levels
Fig. 128: Ham sandwich: Dual formulation.
Thus, the set of bisecting lines for séin dual form consists of a polygonal curve. Because thiseig¥ormed
from edges of the dual lines i4, and because all lines iA have positive slope, this curve is monotonically

increasing. Similarly, the median fd8, M (B), is a polygonal curve which is monotonically decreasing. It
follows thatA and B must intersect at a unique point. The dual of this point ima that bisects both sets.

Lecture Notes 136 CMSC 754



We could compute the intersection of these two curves by altmeous topological plane sweep of both
arrangements. However it turns out that it is possible to dehrbetter, and in fact the problem can be solved
in O(n + m) time. Since the algorithm is rather complicated, | will naisdribe the details, but here are the
essential ideas. The algorithm operates by prune and sdar€Hn + m) time we will generate a hypothesis
for where the ham sandwich point is in the dual plane, and ireewrong, we will succeed in throwing away
a constant fraction of the lines from future consideration.

First observe that for any vertical line in the dual planeés possible to determine i@(n + m) time whether
this line lies to the left or the right of the intersection piof the median levelsi/ (A) and M (B). This can be
done by computing the intersection of the dual linesiofvith this line, and computing their median (n)
time, and computing the intersection of the dual line$okith this line and computing their median (m)
time. If A’s median lies belowB’s median, then we are to the left of the ham sandwich dualtpaird otherwise
we are to the right of the ham sandwich dual point. It turnstbat with a little more work, it is possible to
determine inD(n 4+ m) time whether the ham sandwich point lies to the right or [&# bne of arbitrary slope.
The trick is to use prune and search. We find two lihgsnd L- in the dual plane (by a careful procedure that
I will not describe). These two lines define four quadranthplane. By determining which side of each line
the ham sandwich point lies, we know that we can throw awayliaayhat does not intersect this quadrant from
further consideration. It turns out that by a judicious deodf.; and L., we can guarantee that a fraction of at
least(n + m)/8 lines can be thrown away by this process. We recurse on theimerg lines. By the same sort
of analysis we made in the Kirkpatrick and Seidel prune aadckealgorithm for upper tangents, it follows that
in O(n + m) time we will find the ham sandwich point.

Lecture 31: Shortest Paths and Visibility Graphs

Shortest paths: We are given a set af disjoint polygonalobstaclesn the plane, and two points andt that lie
outside of the obstacles. The problem is to determine theestgath frons to ¢ that avoids the interiors of the
obstacles. (It may travel along the edges or pass througvettiees of the obstacles.) The complement of the
interior of the obstacles is calldtbe space We want to find the shortest path that is constrained to lireedyn
in free space.

Today we consider a simple (but perhaps not the most effjoremy to solve this problem. We assume that we
measure lengths in terms of Euclidean distances. How do vesumne paths lengths for curved paths? Luckily,
we do not have to, because we claim that the shortest pathlwilys be a polygonal curve.

Claim: The shortest path between any two points that avoids a sefydgnal obstacles is a polygonal curve,
whose vertices are either vertices of the obstacles or timspoandt.

Proof: We show that any path that violates these conditions can be replaced by a slighibyter path from
stot. Since the obstacles are polygonal, if the path were notygpahl curve, then there must be some
pointp in the interior of free space, such that the path passingitiirp is not locally a line segment. If we
consider any small neighborhood abgusmall enough to not containor ¢ or any part of any obstacle),
then since the shortest path is not locally straight, we ¢aten it slightly by replacing this curved
segment by a straight line segment jointing one end to therolthus,r is not shortest, a contradiction.
Thus is a polygonal path. Suppose that it contained a vertisat was not an obstacle vertex. Again we
consider a small neighbor hood abetthat contains no part of any obstacle. We can shorten the agsith
above, implying thatr is not a shortest path.

From this it follows that the edges that constitute the stsinpath must travel betweerandt and vertices of
the obstacles. Each of these edges must have the propdrtydbas not intersect the interior of any obstacle,
implying that the endpoints must be visible to each otherréMormally, we say that two poingsandq are
mutually visibleif the open line segment joining them does not intersect rikerior of any obstacle. By this
definition, the two endpoints of an obstacle edge are not afiytuisible, so we will explicitly allow for this
case in the definition below.

Lecture Notes 137 CMSC 754



Definition: Thevisibility graphof s andt and the obstacle set is a graph whose vertices arglt the obstacle
vertices, and verticesandw are joined by an edge if andw are either mutually visible or ifv, w) is an
edge of some obstacle.

Fig. 129: Visibility graph.

It follows from the above claim that the shortest path candsefuted by first computing the visibility graph and
labeling each edge with its Euclidean length, and then coimgthe shortest path by, say, Dijkstra’s algorithm
(see CLR). Note that the visibility graph is not planar, aeti¢e may consist dd(n?) edges. Also note that,
even if the input points have integer coordinates, in ordecdmpute distances we need to compute square
roots, and then sums of square roots. This can be approxdrbgtioating point computations. (If exactness is
important, this can really be a problem, because there ismwik polynomial time procedure for performing
arithmetic with arbitrary square roots of integers.)

Computing the Visibility Graph: We give anO(n?) procedure for constructing the visibility graph ofline seg-
ments in the plane. The more general task of computing thbilitis graph of an arbitrary set of polygonal
obstacles is a very easy generalization. In this contextMevtices are visible if the line segment joining them
does not intersect any of the obstacle line segments. Hoygeellow each line segment to contribute itself as
an edge in the visibility graph. We will make the general poriassumption that no three vertices are collinear,
but this is not hard to handle with some care. The algorithnotoutput sensitive. It denotes the number of
edges in the visibility graph, then @&(n log n + k) algorithm does exist, but it is quite complicated.

The text gives a® (n? log n) time algorithm. We will give arD (n?) time algorithm. Both algorithms are based
on the same concept, namely that of performing an angulaepweound each vertex. The text's algorithm
operates by doing this sweep one vertex at a time. Our atgoitoes the sweep for all vertices simultaneously.
We use the fact (given in the lecture on arrangements) timatigular sort can be performed for all vertices in
O(n?) time. If we build the entire arrangement, this sorting ailgon will involve O(n?) space. However it
can be implemented i@ (n) space using an algorithm callezpological plane sweeopological plane sweep
provides a way to sweep an arrangement of lines using a “fe&xéweeping line. Because events do not need
to sorted, we can avoid th@(log n) factor, which would otherwise be needed to maintain therjyiqueue.

Here is a high-level intuitive view of the algorithm. Firsécall the algorithm for computing trapezoidal maps.
We shoot a bullet up and down from every vertex until it hissfitst line segment. This implicitly gives us
the vertical visibility relationships between verticesla®gments. Now, we imagine that angleontinuously
sweeps out all slopes fromoo to +00. Imagine that all the bullet lines attached to all the vedibegin to turn
slowly counterclockwise. If we play the mind experiment @ualizing the rotation of these bullet paths, the
question is what are the significant event points, and whapdsas with each event? As the sweep proceeds, we
will eventually determine everything that is visible froweey vertex in every direction. Thus, it should be an
easy matter to piece together the edges of the visibilitplyes we go.

Let us consider this “multiple angular sweep” in greateadet

It is useful to view the problem both in its primal and dualrfor For each of th&n segment endpoints =

(va, vp), We consider its dual line* : y = v,x — v,. Observe that a significant event occurs whenever a bullet
path in the primal plane jumps from one line segment to amothieis occurs wheid reaches the slope of the
line joining two visible endpoints andw. Unfortunately, it is somewhat complicated to keep trackvbich
endpoints are visible and which are not (although if we calddo it would lead to a more efficient algorithm).
Instead we will take events to ladl angles) between two endpoints, whether they are visible or not. Bafitju

the slope of such an event will correspond to éheoordinate of the intersection of dual linesandw* in the

Lecture Notes 138 CMSC 754



Fig. 130: Visibility graph by multiple angular sweep.

dual arrangement. (Convince yourself of this.) Thus, byepireg the arrangement of ti2e dual lines from
left-to-right, we will enumerate all the slope events in alag order.

Next let’'s consider what happens at each event point. Cengi¢® state of the angular sweep algorithm for
some slopd. For each vertex, there are two bullet paths emanating froralong the line with slopé. Call
one theforward bullet pathand the other thbackward bullet pathLet f(v) andb(v) denote the line segments
that these bullet paths hit, respectively. If either patlesdoot hit any segment then we store a special null
value. Asf varies the following events can occur. Assuming (throughisglic perturbation) that each slope is
determined by exactly two lines, whenever we arrive at antsvaope there are exactly two verticesandw

that are involved. Here are the possible scenarios:

\\ f(v

(new)
N \
V V\ . 2 W) old) V.,\/Nv)(old)

same invisible entry exit

Fig. 131: Possible events.

Same segment:If v andw are endpoints of the same segment, then they are visibleyaadd the edgéy, w)
to the visibility graph.

Invisible: Consider the distance fromto w. First, determine whethes lies on the same side g$v) or b(v).
For the remainder, assume that iffi&’). (The case ob(v) is symmetrical).

Compute the contact point of the bullet path shot frem directioné with segmentf(v). If this path hits
f(v) strictly beforew, then we know thatv is not visible tov, and so this is a “non-event”.

Segment entry: Consider the segment that is incidentitoEither the sweep is just about to enter this segment
or is just leaving it. If we are entering the segment, then et¢ &) to this segment.

Segment exit: If we are just leaving this segment, then the bullet path mekkd to shoot out and find the next
segment that it hits. Normally this would require some deiag: (In particular, this is one of the reasons
that the text's algorithm has the exif¥logn) factor—to perform this search.) However, we claim that
the answer is available to us (1) time.

In particular, since we are sweeping ovent the same time that we are sweeping avefhus we know
that the bullet extension froma hits f(w). All we need to do is to sef(v) = f(w).

This is a pretty simple algorithm (although there are a nurobeases). The only information that we need to
keep track of is (1) a priority queue for the events, and (B)/ttv) andb(v) pointers for each vertex. The

Lecture Notes 139 CMSC 754



priority queue is not stored explicitly. Instead it is aahile from the line arrangement of the duals of the line
segment vertices. By performing a topological sweep of thengement, we can process all of these events in
O(n?) time.

Lecture 32: Motion Planning

Motion planning: Last time we considered the problem of computing the shiopegth of a point in space around a
set of obstacles. Today we will study a much more generalbagairto the more general problem of how to plan
the motion of one or more robots, each with potentially maggrdes of freedom in terms of its movement and
perhaps having articulated joints.

Work Space and Configuration Space:The environment in which the robot operates is callediisk spacewhich
consists of a set of obstacles that the robot is not allowéténsect. We assume that the work space is static,
that is, the obstacles do not move. We also assume that a emmg@ometric description of the work space is
available to us.

For our purposes, @bot will be modeled by two main elements. The first is@nfiguration which is a finite
sequence of values that fully specifies the position of thetoThe second element is the robot’s geometric
shape description. Combined these two element fully defieerdébot’'s exact position and shape in space.
For example, suppose that the robot is a 2-dimensional palyigat can translate and rotate in the plane. Its
configuration may be described by the y) coordinates of some reference point for the robot, and ale#@ng
that describes its orientation. Its geometric informatiauld include its shape (say at some canonical position),
given, say, as a simple polygon. Given its geometric desonind a configuratiotiz, y, 8), this uniquely
determines the exact positioR(z, y, ) of this robot in the plane. Thus, the position of the robot ban
identified with a point in the robot'sonfiguration space

&(4,3,45)

R(0,0,0)

Fig. 132: Configurations of a translating and rotating robot

A more complex example would be articulated armconsisting of a set of links, connected to one another by a
set ofrevolute joints The configuration of such a robot would consist of a vectqoioft angles. The geometric
description would probably consist of a geometric represen of the links. Given a sequence of joint angles,
the exact shape of the robot could be derived by combinirgdbinfiguration information with its geometric
description. For example, a typical 3-dimensional indaktiobot has six joints, and hence its configuration
can be thought of as a point in a 6-dimensional space. Why set®efally, there are three degrees of freedom
needed to specify a location in 3-space, and 3 more degrefeeemfom needed to specify the direction and
orientation of the robot’s end manipulator.

Given a point in the robot's configuration space, IRfp) denote theslacemenbf the robot at this configura-
tion. The figure below illustrates this in the case of the ptawbot defined above.

Because of limitations on the robot’s physical structure @@ obstacles, not every point in configuration space
corresponds to a legal placement of the robot. Any configarathich is illegal in that it causes the robot
to intersect one of the obstacles is callefbdidden configuration The set of all forbidden configurations is
denoted’t.,1,(R, S), and all other placements are calfege configurationsand the set of these configurations
is denoted’f,.. (R, S), or free space

Now consider thenotion planningproblem in robotics. Given a rob®, an work space, and initial config-
urations and final configuration (both points in the robot’s free configuration space), detee (if possible)

Lecture Notes 140 CMSC 754



l-ll®

Work space Configuration space

Fig. 133: Work space and configuration space.

a way to move the robot from one configuration to the other auithintersecting any of the obstacles. This
reduces to the problem of determining whether there is afpatis to ¢ that lies entirely within the robot’s free
configuration space. Thus, we map the task of computing a’sofbotion to the problem of finding a path for
a single point through a collection of obstacles.

Configuration spaces are typically higher dimensionalepgzend can be bounded by curved surfaces (especially
when rotational elements are involved). Perhaps the sshpkese to visualize is that of translating a convex
polygonal robot in the plane amidst a collection of polydarizstacles. In this cased both the work space and
configuration space are two dimensional. Consider a referpaint placed in the center of the robot. As shown
in the figure above, the process of mapping to configurati@eespnvolves replacing the robot with a single
point (its reference point) and “growing” the obstacles byompensating amount. These grown obstacles are
calledconfiguration obstaclesr C-obstacles.

This approach while very general, ignores many importaattal issues. It assumes that we have complete
knowledge of the robot’s environment and have perfect kadgé and control of its placement. As stated we
place no requirements on the nature of the path, but in ygathiysical objects can not be brought to move and
stop instantaneously. Nonetheless, this abstract viewrigs powerful, since it allows us to abstract the motion

planning problem into a very general framework.

For the rest of the lecture we will consider a very simple aafse convex polygonal robot that is translating
among a convex set of obstacles. Even this very simple probkes a number of interesting algorithmic issues.

Planning the Motion of a Point Robot: As mentioned above, we can reduce complex motion planniolglgms to
the problem of planning the motion of a point in free configiaraspace. First we will consider the question of
how to plan the motion of a point amidst a set of polygonal atists in the plane, and then we will consider the
question of how to construct configuration spaces.

To determine whether there is a path from one point to anathfee configuration space, we will subdivide
free space into simple convex regions. In the plane, we@&rkaow how to do this by computing a trapezoidal
map. We can construct a trapezoidal map for all of the linenseds bounding the obstacles, then throw away
any faces that lie in the forbidden space. We also assumevehaive a point location data structure for the
trapezoidal map.

Next, we create a planar graph, calletbad map based on the trapezoidal map. To do this we create a vertex
in the center of each trapezoid and a vertex at the midpoieaoli vertical edge. We create edges joining each
center vertex to the vertices on its (at most four) edges.

Now to answer the motion planning problem, we assume we sendhe start poing and destination point

We locate the trapezoids containing these two points, andaxd them to the corresponding center vertices. We
can join them by a straight line segment, because the cetlsecdubdivision are convex. Then we determine
whether there is a path in the road map graph between thesesttices, say by breadth-first search. Note that
this will not necessarily produce the shortest path, biitéf¢ is a path from one position to the other, it will find
it.

This description ignores many practical issues that anigedtion planning, but it is the basis for many practical
motion planning problems. More realistic configuration cgsawill contain more information (for example,

Lecture Notes 141 CMSC 754



Fig. 134: Motion planning using road maps.

encodings of the current joint rotation velocities) and wgually refine the road map to a much finer extent,
so that short paths can be approximated well, as well as ingnother elements such as guaranteeing minimal
clearances around obstacles.

Configuration Obstacles and Minkowski Sums: Let us consider how to build a configuration space for a set of

polygonal obstacles. We consider the simplest case ofléttémgg a convex polygonal robot amidst a collection
of convex obstacles. If the obstacles are not convex, themayesubdivide them into convex pieces.

Consider a roboR, whose placement is defined by a translafos (z,y). Let R(z,y) (also denotedR(p))
be the placement of the robot with its reference point.aGiven an obstaclé, the configuration obstaclés
defined as all the placements®fthat intersect’, that is

CP ={p|R(p)N P # 0}.
One way to visualiz€P is to imagine “scraping’R along the boundary aP and seeing the region traced out
by R'’s reference point.

The problem we consider next is, givéhand P, compute the configuration obstad®. To do this, we first
introduce the notion of Minkowski sumLet us violate our notions of affine geometry for a while, #mdk of
points(z, y) in the plane as vectors. Given any two s&fsand.S; in the plane, define theMinkowski surto
be the set of all pairwise sums of points taken from each set:

S1® 82 = {pP+q|pe s, qe 52}

Also, define—S = {—p'| p'€ S}. Observe that for the case of a translating robot, we canelBfip) asR @ p.

Fig. 135: Configuration obstacles and Minkowski sums.

Claim: Given atranslating robd® and an obstacl®,CP = P @ (—R).

Proof: We show thafR (§) intersectsP if and only if § € P & (—R). Note thaty € P @ (—R) if and only if
there exis{y € P and# € R such thaty = 5 — 7. Similarly, R(¢)(= R @ ¢) intersectsP if and only if
there exists point8 € R andp € P such that”+ ¢ = p. These two conditions are clearly equivalent.

Lecture Notes 142 CMSC 754



Note that the proof made no use of the convexityRobr P. It works for any shapes and in any dimension.
However, computation of the Minkowski sums is most efficiiamtconvex polygons.

It is an easy matter to computeR in linear time (by simply negating all of its vertices) theoptem of com-
puting the C-obstacléP reduces to the problem of computing a Minkowski sum of twovesrpolygons. We
claim that this can be done @(m + n) time, wherem is the number of vertices iR andn is the number of
vertices inP. We will leave the construction as an exercise.

The algorithm is based on the following observation. Givereetor d, We say that a poinp is extremein
directiond if it maximizes the dot produg - d.

Observation: Given two polygons” and R, then the set of extreme points Bf® R in directiond is the set of
sums of pointg andr that are extreme in directiahfor P and R, respectively.

The book leaves the proof as an exercise. It follows easilhbyinearity of the dot product.

From this observation, it follows that there is a simple aittyon for computingP & R, when both are convex
polygons. In particular, we perform an angular sweep by idenisig a unit vectorfrotating counterclockwise
around a circle. Ag rotates, it is an easy matter to keep track of the vertex oe eflg andR that is extreme
in this direction. Wheneved is perpendicular to an edge of eithBror R, we add this edge to the vertex of
the other polygon. The algorithm is given in the text, andlisstrated in the figure below. The technique of
applying one or more angular sweeps to a convex polygonliscctide method ofotating calipers

Fig. 136: Computing Minkowski sums.

AssumingP andR are convex, observe that each edgé’adind each edge d® contributes exactly one edge
to P + R. (If two edges are parallel and on the same side of the pokjgben these edges will be combined
into one edge, which is as long as their sum.) Thus we havetlmsving.

Claim: Given two convex polygons? andR, with n andm edges respectively, their Minkowski suf@® R
can be computed i®(n + m) time, and consist of at most+ m edges.

Complexity of Minkowski Sums: We have shown that free space for a translating robot is thgpnent of a
union of C-obstacle§P;, each of which is a Minkowski sum of the forf @ R, whereP; ranges over all the
obstacles in the environment. K andR are polygons, then the resulting region will be a union of/gohs.
How complex might this union be, that is, how many edges amtices might it have?

To begin with, let’s see just how bad things might be. Suppaseare given a robdR with m sides and a set
of work-space obstacl® with n sides. How many sides might the Minkowski sut® R have in the worst
case?0(n +m)? O(nm), even more? The complexity generally depends on what dpeoiperties if anyP
andR have.

Nonconvex Robot and Nonconvex ObstaclesSuppose that botR and P are nonconvex simple polygons. Let
be the number of sides & andn be the number of sides &f. How many sides might there be in the Minkowski
sumP ¢ R in the worst case? We can derive a quick upper bound as falleinat observe that if we triangulate
P, we can break it into the union of at most- 2 triangles. That is:

P = U?:_12Tia
m—2
R = Uj:1 Sj.

Lecture Notes 143 CMSC 754



It follows that
PO®R=UL U2 (T, 6 8)).

?

Thus, the Minkowski sum is the union @?(nm) polygons, each of constant complexity. Thus, there are
O(nm) sides in all of these polygons. The arrangement of all ofeliee segments can have at mést?m?)
intersection points (if each side intersects with eachrptlaed hence this is an upper bound on the number of
vertices in the final result.

Could things really be this bad? Yes they could. Consideivloepolygons in the figure below left. There are

O(n?*m?) ways that these two polygons can be “docked”, as shown orighe The Minkowski sumP & —R

is shown in the text. Notice that the large size is caused éyntimber of holes. (It might be argued that this is
not fair, since we are not really interested in the entireRdimski sum, just a single face of the Minkowski sum.

Proving bounds on the complexity of a single face is an istérg problem, and the analysis is quite complex.)

P '

Fig. 137: Minkowski sum of)(n?m?) complexity.

As a final observation, notice that the upper bound holds #vBr(andRR for that matter) is not a single simple
polygon, but any union of triangles.

Convex Robot and Nonconvex ObstaclesiWe have seen that the worst-case complexity of the Minkowsskin
might range fromO(n + m) to as high ag)(n?m?), which is quite a gap. Let us consider an intermediate
but realistic situation. Suppose that we assume/thiatan arbitraryn-sided simple polygon, an# is a convex
m-sided polygon. Typicallyn is much smaller than. What is the combinatorial complexity @ @& R in the
worst case? As before we can observe thaan be decomposed into the uniornmof 2 trianglesT;, implying
that

POR=UX T, ®R).

Each Minkowski sum in the union is of complexity + 3. So the question is how many sides might there be in
the union ofO(n) convex polygons each with(m) sides? We could derive a bound on this quantity, but it will
give a rather poor bound on the worst-case complexity. Tosdse consider the limiting case of = 3. We
have the union of. convex objects, each of complexity(1). This could have complexity as high 8¢n?), as
seen by generating a criss-crossing pattern of very skimaygles. But, if you try to construct such a counter
example, you won't be able to do it.

To see why such a counterexample is impossible, supposgahatart with nonintersecting triangles, and then
take the Minkowski sum with some convex polygon. The clairth&t it is impossible to generate this sort of
criss-cross arrangement. So how complex an arrangemegboasonstruct? We will show the following.

Theorem: Let R be a convexm-gon andP and simplen-gon, then the Minkowski sun® & R has total
complexityO(nm).

Is O(nm) an attainable bound? The idea is to go back to our analogycodpiing” R around the boundary of
P. Can we arrang® such that most of the edges®&fscrape over most of thevertices ofP? Suppose thak

Lecture Notes 144 CMSC 754



is a regular convex polygon withu sides, and thaP has the comb structure shown in the figure below, where
the teeth of the comb are separated by a distance at leastjaskathe diameter &®. In this caseR will have
many sides scrape across each of the pointy ends of the ir@plling that the final Minkowski sum will have
total complexityQ2(nm).

Q P+R

R

Fig. 138: Minkowski sum oD (nm) complexity.

The Union of Pseudodisks:Consider a translating robot given as smansided convex polygon and a collection of
polygonal obstacles having a total ofvertices. We may assume that the polygonal obstacles havetban-
gulated into at most triangles, and so, without any loss of generality, let ussaer an instance of an-sided
robot translating among a set oftriangles. As argued earlier, each C-obstacle®é&s+ m) = O(m) sides,
for a total of O(nm) line segments. A naive analysis suggests that this manységeents might generate as
many asO(n?m?) intersections, and so the complexity of the free space camobarger. However, we assert
that the complexity of the space will be much smaller, in fectomplexity will beO(nm).

To show thatD(nm) is an upper bound, we need some way of extracting the spemahetric structure of the
union of Minkowski sums. Recall that we are computing theoarof 7; & R, where theT;’s have disjoint
interiors. A set of convex object®y,09,...,0,} is called acollection of pseudodisk§for any two distinct
objectso; ando; both of the set-theoretic differences\o; ando;\o; are connected. That is, if the objects
intersect then they do not “cross through” one another. iwaethe pseudodisk property is not a property of a
single object, but a property that holds among a set of ahject

Pseudodisks Not pseudodisks

Fig. 139: Pseudodisks.

Lemma 1: Given a set convex objects, T, . .., T,, with disjoint interiors, and conveR, the set
{T;®oR|1<i<n}

is a collection of pseudodisks.

Proof: Consider two polygon$} andT> with disjoint interiors. We want to show th@i & R and7; & R do
not cross over one another.
Given any directional unit vectaf, the most extremgoint of R in directiond is the pointr € R that
maximizes the dot produc(tf- r). (Recall that we treat the “points” of the polygons as if thvegre
vectors.) The point of; & R that is most extreme in directiahis the sum of the pointsandr that are
most extreme foff; andR, respectively.
Given two convex polygon$; andT>, with disjoint interiors, they define two outer tangents, lasven in
the figure below. Letl; andds be the outward pointing perpendicular vectors for thesgdats. Because

Lecture Notes 145 CMSC 754



d2 a dZ
° d T, extreme

Fig. 140: Alternation of extremes.

these polygons do not intersect, it follows easily that asdihectional vector rotates from to da, T will
be the more extreme polygon, and fraimto d; 7% will be the more extreme. See the figure below.

Now, if to the contraryl; @ R and7»> &R had a crossing intersection, then observe that we can fimdgoi
p1 P2, 3, @andpy, in cyclic order around the boundary of the convex hull®f & R) U (T ¢ R) such
thatpy,ps € T1 @ R andps, py € To @ R. First considep;. Because it is on the convex hull, consider
the directiond; perpendicular to the supporting line here. kget;, andt, be the extreme points ®, T}
andTy in directiond;, respectively. From our basic fact about Minkowski sums aeech

pr=r+t p2 =71+t

Sincep; is on the convex hull, it follows that; is more extreme thaty, in directioncfl, that is, T} is
more extreme thaif in directiond; . By applying this same argument, we find tliatis more extreme
thanTs in directionsd; andds, but thatT}, is more extreme thaf, in directionsd, andd,. But this is
impossible, since from the observation above, there carn bwst one alternation in extreme points for
nonintersecting convex polygons. See the figure below.

d, T, extreme d
d d 2 T, extreme

3 3 2
T,+R—

T+ R dy

d d, T, extreme
1 T,extreme

dy

Fig. 141: Proof of Lemma 1.

Lemma 2: Given a collection of pseudodisks, with a totakofertices, the complexity of their union @(n).

Proof: This is a rather cute combinatorial lemma. We are given sasfieation of pseudodisks, and told that
altogether they have vertices. We claim that their entire union has complexity). (Recall that in
general the union ofi convex polygons can have complexify(n?), by criss-crossing.) The proof is
based on a clever charging scheme. Each vertex in the unibmeraharged to a vertex among the original
pseudodisks, such that no vertex is charged more than tWwhus.will imply that the total complexity is
at most2n.

There are two types of vertices that may appear on the bound@ae first are vertices from the original
polygons that appear on the union. There can be at mesth vertices, and each is charged to itself. The
more troublesome vertices are those that arise when twoseafgevo pseudodisks intersect each other.
Suppose that two edges ande, of pseudodiskd”, and P, intersect along the union. Follow edge
into the interior of the pseudodisk. Two things might happen. First, we might hit the endpeinf this

e before leaving the interioP,. In this case, charge the intersectiorwtoNote thatv can get at most

Lecture Notes 146 CMSC 754



two such charges, one from either incident edge; passes all the way through, before coming to the
endpoint, then try to do the same with edge Again, if it hits its endpoint before coming out &1, then
charge to this endpoint. See the figure below.

e e
e €, e

Charge v Charge u Cannot happen
Fig. 142: Proof of Lemma 2.

But what do we do if botte; shoots straight througR, ande, shoots straight through; ? Now we have
no vertex to charge. This is okay, because the pseudodiglefiygamplies that this cannot happen. If both
edges shoot completely through, then the two polygons nmassover each other.

Recall that in our application of this lemma, we hav€-obstacles, each of which has at mast- 3 vertices,
for a total input complexity o©(nm). Since they are all pseudodisks, it follows from Lemma 2 thattotal
complexity of the free space 8(nm).

Lecture 33: Fixed-Radius Near Neighbors

Fixed-Radius Near Neighbor Problem: As a warm-up exercise for the course, we begin by considenegof the
oldest results in computational geometry. This problem e@ssidered back in the mid 70’s, and is a funda-
mental problem involving a set of points in dimensi@nWe will consider the problem in the plane, but the
generalization to higher dimensions will be straightfamvaThe solution also illustrates a common class of
algorithms in CG, which are based on grouping objects intkéts that are arranged in a square grid.

We are given a seP of n points in the plane. It will be our practice throughout theirse to assume that each
point p is represented by it&z,y) coordinates, denote,, p,). Recall that the Euclidean distance between
two pointsp andg, denoted|pq||, is

Ipall = /(e — 42)% + (0, — 0,)*.

Given the sef” and a distance > 0, our goal is to report all pairs of distinct pointsg € P such that|pq|| < r.
This is called thdixed-radius near neighbor (reporting) problem

Reporting versus Counting: We note that this is eeportingproblem, which means that our objective is to report all
such pairs. This is in contrast to the correspondiogntingproblem, in which the objective is to return a count
of the number of pairs satisfying the distance condition.

It is usually easier to solve reporting problems optimaligirt counting problems. This may seem counterin-
tuitive at first (after all, if you can report, then you cante@ly count). The reason is that we know that any
algorithm that reports some numbkrof pairs must take at lea$t(k) time. Thus ifk is large, a reporting
algorithm has the luxury of being able to run for a longer tiamal still claim to be optimal. In contrast, we
cannot apply such a lower bound to a counting algorithm.

The approach described here seems to work only for the regarase. There is a more efficient solution to the
counting problem, but this requires more sophisticatechous.

Simple Observations: To begin, let us make a few simple observations. This prold@measily be solved i@ (n?)
time, by simply enumerating all pairs of distinct points arainputing the distance between each pair. The
number of distinct pairs of points is

n\ n(n—1)
(5) -5

Lecture Notes 147 CMSC 754



Letting k£ denote the number of pairs that reported, our goal will berttd éin algorithm whose running time is
(nearly) linear imn andk;, ideally O(n + k). This will be optimal, since any algorithm must take the timeead

all the input and print all the results. (This assumes a n@peesentation of the output. Perhaps there are more
clever ways in which to encode the output, which would regjless tharD (k) space.)

To gain some insight to the problem, let us consider how teestile 1-dimensional version, where we are just
given a set of, points on the line, say;;, x», . .., z,,. In this case, one solution would be to first sort the values
in increasing order. Let suppose we have already done tidssa

T < T2 <...<Zp.

Now, fori running from 1 ton, we consider the successive poini$ 1, z;12, z;1+3, and so on, until we first find
a point whose distance exceedd/Ne reportr; together with all succeeding points that are within distanc

—
Xp XoXg Xy X5 Xg
1 1
— e

Fig. 143: Fixed radius nearest neighbor on the line.

The running time of this algorithm involves tli&(n log n) time needed to sort the points and the time required
for distance computations. L&t denote the number of pairs generated when we wisitObserve that the
processing op; involvesk;+1 distance computations (one additional computation fopthiets whose distance
exceeds). Thus, up to constant factors, the total running time is:

n n
T(n, k) = nlogn+Z(k:i+1) = nlogn+n+2ki
i—1 i—1
= nlogn+n+k = O(k+nlogn).

This is close to thé®(k +n) time we were hoping for. It seems that any approach basedrtingis doomed to
take at leasf2(n log n) time. So, if we are to improve upon this, we cannot sort. Babiging really necessary?
Let us consider an approach based on bucketing.

1-dimensional Solution with Bucketing: Rather than sorting the points, suppose that we subdiviglért into in-
tervals of lengthr. In particular, we can take the line to be composed of an ieficollection of half-open
intervals:
ooy [=8r,=2r), [-2r,—T), [-7,0), [0,7), [r,2r), [2r,3r),...

We refer to these disjoint intervals bBackets Given the intervalbr, (b + 1)r), its bucket indexs the integeb.
Given any pointr, it is easy to see that the index of the containing bucketsshji) = |z/r]. Thus, inO(n)
time we can associate thepoints of P with a set ofn integer bucket indice$(z) for eachz € P. Although
there are an infinite number of buckets, at mostill be occupied meaning that they contain at least one point
of P.

There are a number of ways to organize the occupied buckéesy dould be sorted, but then we are back to
O(nlogn) time. Since bucket indices are integers, a better appraaithstore the occupied bucket indices in
a hash table Recall from basic data structures that a hash table is astlateture that supports the following
operations ir0O(1) expected time:

insert(o, b) : Insert objecb with key valueb. We allow multiple objects to be inserted with the same key.

L + find(b) : Return a listL of references to objects having key vallie This operation take®(1 + |L|)
expected time. If no keys have this value, then an emptydistturned.

remove(o, b) : Remove the object indicated by referemcdaving key valué from the table.

Lecture Notes 148 CMSC 754



Each point is associated with the key value given by its buicidexd = |2/r|. Thus inO(1) expected time,
we can determine which bucket contains a given point and tliskbucket up in the hash table.

The fact that the running time is in the expected case, rétlagrworst case is a bit unpleasant. However, it can
be shown that by using a good randomized hash function, thieapility that the total running time is worse
thanO(n) can be made arbitrarily small. If the algorithm performsi#figantly more than the expected number
of computations, we can simply chose a different random hasttion and try again. This will lead to a very
practical solution.

How does bucketing help? Observe that if paities in bucket, then any successors that lie within distance
must lie either in bucket or in b + 1. This suggests the straightforward solution shown below.

Fixed-Radius Near Neighbor on the Line by Bucketing

(1) Foreachp € P, insertp in the hash table with the key valéép).
(2) For eaclhp € P do the following:
(a) Letb(p) be the bucket containing

(b) Enumerate all the points of buckét®) andb(p) + 1, and for each poing € b(p) U b(p) + 1 such thaty # p and
lg — p| < r, output the paifp, q).

Note that this will output duplicate paif®,q) and(q,p). If this bothers you, we could add the additional
condition thatg > p. The key question is determining the time complexity of thligorithm is how many
distance computations are performed in step (2b). We caam@ach point in bucket with all the points in
bucketsb andb + 1. However, not all of these distance computations will regula pair of points whose
distance is within-. Might it be that we waste a great deal of time in performingnpatations for which we
receive no benefit? The lemma below shows that we perform me than a constant factor times as many
distance computations and pairs that are produced.

It will simplify things considerably if, rather than coung distinct pairs of points, we simply count all (ordered)
pairs of points that lie within distanaeof each other. Thus each pair of points will be counted twiggy) and
(¢, p). Note that this includes reporting each point as a fjaip) as well, since each point is within distance
of itself. This does not affect the asymptotic bounds, stheenumber of distinct pairs is smaller by a factor of
roughly1/2.

Lemma: Letk denote the number of (not necessarily distinct) pairs afitsadf P that are within distance of
each other. LeD denote the total number distance computations made in2i@pfthe above algorithm.
ThenD < 2k.

Proof: We will make use of the following inequality in the proof:

2 2
T
zy < ;ry

This follows by expanding the obvious inequality — y)? > 0.

Let B denote the (infinite) set of buckets. For any budket B, letb + 1 denote its successor bucket on
the line, and lety, denote the number of points éfin b. Define

S:an.

beB

First we bound the total number of distance computatibnas a function ofS. Each point in buckeb

Lecture Notes 149 CMSC 754



computes the distance to every other point in buékatd every point in buckét+ 1, and hence

D = an(nb+nb+1) = an—l—nbnbﬂ = Zn%—l—anan

beB beB beB beB
2 2
ny +mn
< 2 b b+1
< D omEy S5
beB beB
2 2
_ 2 ﬂ nb+1 - S § § — 929
7an+z2+z2 - +2+2* ‘
beB beB beB

Next we bound the number of pairs reported from below as aifumof S. Since each pair of points lying
in bucketb is within distance- of every other, there ane? pairs in bucket alone that are within distance
r of each other, and hence (considering just the pairs gestevdthin each bucket) we have> S.
Therefore we have

D <2S <2k,

which completes the proof.

By combining this with theD(n) expected time needed to bucket the points, it follows thatdhial expected
running time isO(n + k).

A worthwhile exercise to consider at this point is the isstihe bucket width-. How would changing the value
of r affect the implementation of the algorithm and its efficighd-or example, if we used buckets of siz&

or 2r, would the above algorithm (after suitable modificatiorayédthe same asymptotic running time? Would
buckets of size any constant timesork?

Generalization to d dimensions: This bucketing algorithm is easy to extend to multiple disiens. For example, in
dimension 2, we bucket points into a square grid in which egithsquare is of side length (As before, you
might consider the question of what values of bucket sizad e a correct and efficient algorithm.) The bucket
index of a poinp : (p;,py) is apairB(p) = (b(ps), b(py)) = (|p/7] , lpy/7]). We apply a hash function that
accepts two arguments. To generalize the algorithm, fon @aint we consider the points in its surrounding
3 x 3 subgrid of buckets. The result is shown in the following cbdgment.

3o

r

Fig. 144: Fixed radius nearest neighbor on the plane.

Fixed-Radius Near Neighbor in the Plane
(1) Foreachp = (pz,py) Of P, insertp in the hash table with the (2-dimensional) bucket ind@&») = (b(pz), b(py))-
(2) For eactp € P do the following:

(a) LetB(p) = (b(pz), b(py)) be the bucket index fap.

(b) Enumerate all the points of buckétgp.) + 4, b(py) + j), fori, 5 € {—1,0,+1}. For each such point if ||pg|| <,
output the pailp, q).

Lecture Notes 150 CMSC 754



By generalizing the analysis used in the 1-dimensional,casmn be shown that the algorithm’s expected
running time isO(n + k). The details are left as an exercise (we just have more teremisider, but each cell
is involved with at most 9 other cells which is absorbed it ¢onstant factor hidden by the O-notation).

This example problem serves to illustrate some of the tymgieaments of computational geometry. Geometry
itself did not play a significant role in the problem, othearthe relatively easy task of computing distances. We
will see examples later this semester where geometry playsch more important role. The major emphasis
was on accounting for the algorithm’s running time. Alsoathtat, although we discussed the possibility of gen-
eralizing the algorithm to higher dimensions, we did noatithe dimension as an asymptotic quantity. In fact,
a more careful analysis reveals that this algorithm’s mgriime increases exponentially with the dimension.
(Can you see why?)

Lecture 34: Multidimensional Polytopes and Convex Hulls

Polytopes: Today we consider convex hulls in dimensions 3 and highethodigh dimensions greater than 3 may
seem rather esoteric, we shall see that many geometriciaption problems can be stated as some search over
a polytope ind-dimensional space, whetdemay be greater than 3.

Before delving into this, let us first present some basic serile define golytope(or more specifically a-
polytope) to be the convex hull of a finite set of point®Rih We say that a set d@f points isaffinely independent

if no one point can be expressed as an affine combinationigthaiinear combination whose coefficients sum
to 1) of the others. For example, three points are affinelgpetdent if they are not on the same line, four
points are affinely independent if they are not on the sanmepland so on. The convex hull bf+ 1 affinely
independent points is calledsimplexor k-simplex For example, the line segment joining two points is a
1-simplex, the triangle defined by three points is a 2-simpdad the tetrahedron defined by four points is a

AN

O-simplex  1-simplex 2-simplex 3-simplex Supporting hyperplane

Fig. 145: Simplices and supporting hyperplane.

Any (d — 1)-dimensional hyperplankin d-dimensional space divides the space into (open) halfspdeaoted
h~ andht, so thatR? = h~ U h U h't. Let us defineh— = h~ U h andht = hT U h to be the closures of
these halfspaces. We say that a hyperpkurpportsa polytopeP (and is called supporting hyperplanef P)

if h N P is nonempty andP is entirely contained within eithér— or A+. The intersection of the polytope and
any supporting hyerplane is calledaceof P. Faces are themselves convex polytopes of dimensionsngngi
from 0 tod — 1. The 0-dimensional faces are callegttices the 1-dimensional faces are calledgesand the

(d —1)-dimensional faces are calléacets (Note: When discussing polytopes in dimension 3, peopknafse
the term “face” when they mean “facet”. It is usually cleanfr context which meaning is intended.)

a
Vertices: a, b, ¢, d
b d Edges: ab, ac, ad, bc, bd, cc
c Facets: abc, abd, acd, bcd

Fig. 146: A tetrahedron and its proper faces.

The faces of dimensions 0 tb— 1 are callecbroper facesIt will be convenient to define two additional faces.

Lecture Notes 151 CMSC 754



The empty set is said to be a face of dimensianand the entire polytope is said to be a face of dimensdion
We will refer to all the faces, including these two additibfaes as thémproper face®f the polytope.

There are a number of facts that follow from these definitions

e The boundary of a polytope is the union of its proper faces.
e A polytope has a finite number of faces. Each face is a polytope
e A polytope is the convex hull of its vertices.

e A polytope is the intersection of a finite number of closeddpdces. (Note that the converse need not be
true, since the intersection of halfspaces may generalinbeunded. Such an unbounded convex body is
either called golyhedronor aunbounded polytopg

Observe that d-simplex has a particularly regular face structure. If weslg vy, vs, . .., v4 denote the vertices
of the simplex, then for each 2-element $et, v; } there is an edge of the simplex joining these vertices, for
each 3-element s¢v;, v;, v, } there is a 3-face joining these these three vertices, and so.

Fact: The number ofj-dimensional faces on @&simplex is equal to the numbéy + 1)-element subsets of
domain of sizel + 1, that is,
(d + 1) (d+1)!

Incidence Graph: How are polytopes represented? In addition to the geomtdpepties of the polytope (e.g., the
coordinates of its vertices or the equation of its faces$ miseful to store discrete connectivity information,
which is often referred to as thtepologyof the polytope. There are many representations for poggopn
dimension 2, a simple circular list of vertices suffices. imension 3, we need some sort of graph structure.
There are many data structures that have been proposed.afiéeyaluated based on the ease with which the
polytope can be traversed and the amount of storage neeframples include thevinged-edgequad-edge
andhalf-edgedata structures. We may discuss these later in the semester.

Jj+1

A useful structure for polytopes in arbitrary dimensionsded theincidence graphEach node of the incidence
graph corresponds to an (improper) face of the polytope. Mdfte an edge between two faces if their dimension
differs by 1, and one (of lower dimension) is contained wittkie other (of higher dimension). An example is
shown in Fig. 147 below for a simplex. Note the similarityweén this graph and the lattice of subsets based
on inclusion relation.

Fig. 147: The incidence graph for a tetrahedron.

Polarity: There are two natural ways to create polytopes. One is asotiheex hull of a set of points and the other
is as the intersection of a collection of closed halfspaassyming it is bounded). These two concepts are
essentially identical, and this can be observed by the pirasformation, which maps points to hyperplanes
and vice versa. Fix any poi® in d-dimensional space. We may think Ofas the origin, and therefore, any

Lecture Notes 152 CMSC 754



pointp € R? can be viewed as@element vector. (10 is not the origin, thep can be identified with the vector
p — O.) Thepolar hyperplanef p, denotedy* is defined by

pr={zeR|(p-2) =1},

where the expressidqp- x) is just the standard vectdot-product((p-z) = p1x1 +p2za+- - -+paxq). Observe
that if p is on the unit sphere centered abaytthenp™ is a hyperplane that passes throygind is orthogonal
to the vectoilOp. As we movep away from the origin along this vector, the dual hyperplamees closer to the
origin, and vice versa, so that the product of their distaricam the origin is always 1.

Now, leth be any hyperplane that does not cont@inThepoleof h, denotedh* is the point that satisfies

(h*-z)=1 forallz € h.

N Incidence Preserving
p
+
(@]
h*
L]

p
. Inclusion Reversing
(@]

Fig. 148: The polar transformation and its properties.

The Polar Transformation

Clearly this double transformation is an involution, thatp*)* = p and(h*)* = h. The polar transformation
preserves important geometric relationships. Given afpjpeeh, define

ht = {zeRY|(z-h*) <1} h™ = {zeR?|(z-h*)>1}.
Thatis,h™ is the open halfspace containing the origin &ndis the other open halfspace fbr

Claim: Let p be any point inR? and leth be any hyperplane iiR?. The polar transformation satisfies the
following two properties.

Incidence preserving: The polarity transformation preserves incidence relatigus between points and
hyerplanes. That ig; belongs ta if and only if h* belongs tay*.

Inclusion Reversing: The polarity transformation reverses relative positidatienships in the sense that
p belongs tah* if and only if »* belongs to(p*) ™, andp belongs tah~ if and only if h* belongs to
(")~

In general, any bijective transformation that preserveglence relations is calledduality. The above claim
implies that polarity is a duality.

We can now formalize the aforementioned notion of polytogeivalence. The idea will be to transform a
polytope defined as the convex hull of a finite set of points polgtope defined as the intersection of a finite
set of closed halfspaces. To do this, we need a way of mappioinato a halfspace. Our approach will be to
take the halfspace that contains the origin. For any pointR? define the following closed halfspace based on
its polar:

p* =pF ={zeR|(z-p) < 1}.

(The notation is ridiculous, but this is easy to parse. Eiosisider the polar hyperplanemfand take the closed
halfspace containing the origin.) Observe that if a halfgga™ containsp, then by the inclusion-reversing
property of polarity, the polar poirit* is contained withirp .

Lecture Notes 153 CMSC 754



Now, for any set of pointg®> C R?, we define itgpolar imageto be the intersection of these halfspaces
P#* ={zcRY|(z-p) <1,¥p € P}.

Thus P# is the intersection of an (infinite) set of closed halfspaces for each poinp € P. A halfspace is
convex and the intersect of convex sets is convexP?®ds a convex set.

To see the connection with convex hulls, fet= {p4, ..., p,} be a set of points and 18 = conv(S). Let us
assume that the origif is contained withinP. (We can guarantee this in a number of ways, e.g., by tranglat
P so its center of mass coincides with the origin.) By defimitithe convex hull is the intersection of the set of
all closed halfspaces that contain That is, P is the intersect of an infinite set of closed halfspaces. Wit a
these halfspaces? At is a halfspace that contains all the pointsSothen by the inclusion-reversing property
of polarity, the polar point.* is contained within all the hyperplanp$+, which implies that.* € P#. This
means that, through polarity, the halfspaces whose irgtoses the convex hull of a set of points is essentially
equivalent to the polar points that lie within the polar iraagf the convex hull.

Convex Hull Polar Image

Fig. 149: The polar image of a convex hull.

Lemma: LetS = {pi,...,p,} be a set of points iR¢ and letP = conv(S). Then its polar image is the
intersection of the corresponding polar halfspaces, that i

n
P# = ﬂ pf'*'.
i=1

Furthermore:

(i) A pointa € R? lies on the boundary aP if and only if the polar hyperplane* supportsP .
(i) Eachk-face of P corresponds to &l — 1 — k)-face of P# and given faceg, f» of P wheref; C fs,
the corresponding face§’, /7" of P# satisfy f* D f¥. (That s, inclusion relations are reversed.)

It is not hard to prove that the polar image of a polytope isramlution, that is( P#)# = P. (See Boissonnat
and Yvinec for proofs of all these facts.)

Thus, the polar imag®# of a polytope is structurally isomorphic and all affine relations o map through
polarity to P#. From a computational perspective, this means that we ctentpa polar of all the points aP,
consider the halfspaces that contain the origin, and takentbrsection of these halfspaces. Thus, the problems
of computing convex hulls and computing the intersectiomalfspaces are computationally equivalent. (In
fact, once you have computed the incidence graph for onejugbdiip it “upside-down” to get the other.)

For example, if you know yourlatonic solidgtetrahedron, cube, octahedron, dodecahedron, and edsat),
you may remember that the square and octahedron are polar theadodecahedron and icosohedron are polar
duals, and the tetrahedron is self-dual.

Simple and Simplicial Polytopes: Observe that if a polytope is the convex hull of a set of paimgeneral position,
then for0 < j < d — 1, eachj-face is aj-simplex. A polytope isimplicialif all its proper faces are simplices.

Lecture Notes 154 CMSC 754



If we take a dual view, consider a polytope that is the intetiea of a set ofz halfspaces in general position.
Then eacly-face is the intersection of exactly — j) hyperplanes. A polytope is said to bienpleif eachj-face

is the intersection of exactlyl — j)-hyperplanes. In particular, this implies that each veidémcident to exactly

d facets. Further, eachiiface can be uniquely identified with a subsetiof j hyperplanes, whose intersection
defines the face. Following the same logic as in the previauagvaph, it follows that the number of vertices in
such a polytope is naively at maStn?). (Again, we'll see later that the tight boundd¥n!%/21).) It follows
from the results on polarity that a polytope is simple if amjydf its polar is simplicial.

An important observation about simple polytopes is thatidleal region around each vertex is equivalent to a
vertex of a simplex. In particular, if we cut off a vertex ofienple polytope by a hyperplane that is arbitrarily
close to the vertex, the piece that has been cut offisanplex.

It easy to show that among all polytopes having a fixed numbeenices, simplicial polytopes maximize the
number of faces of all higher degrees. (Observe that otlserthiere must be degeneracy among the vertices.
Perturbing the points breaks the degeneracy, and will géipesplit faces of higher degree into multiple faces
of lower degree.) Dually, among all polytopes having a fixathber of facets, simple polytopes maximize the
number of faces of all lower degrees.

Another observation allows us to provide crude bounds omtimeber of faces of various dimensions. Consider
first a simplicial polytope having vertices. Eacl{j — 1)-face can be uniquely identified with a subsetjof
points whose convex hull gives this face. Of course, untespolytope is a simplex, not all of these subsets will
give rise to a face. Nonetheless this yields the followiniy@apper bound on the numbers of faces of various
dimensions. By applying the polar transformation we in fgett two bounds, one for simplicial polytopes and
one for simple polytopes.

Simplicial Polytope Simple Polytope

Fig. 150: Simplicial and simple polytopes.

Lemma: (Naive bounds)
(i) The number faces of dimensigrof a polytope withn vertices is at mos(tjjl).
(i) The number of faces of dimensignof a polytope withn facets is at mos(tdﬁj).

These naive bounds are not tight. Tight bounds can be darsiad more sophisticated relations on the numbers
of faces of various dimensions, called tBhehn-Sommerville relationsWe will not cover these, but see the
discussion below of the Upper Bound Theorem.

The Combinatorics of Polytopes: Let P be ad-polytope. For—1 < k < d, letni(P) denote the number df-faces
of P. Clearlyn_;(P) = nq(P) = 1. The numbers of faces of other dimensions generally saisiymber of
combinatorial relationships. The simplest of these isecHfuler’s relation

Theorem: (Euler's Relation) Given ang-polytopeP we havezzzfl(—l)’“nk(P) =0.

This says that the alternating sum of the numbers of faces $or. For example, a cube has 8 vertices, 12
edges, 6 facets, and together with the faces of dimensioandd we have

-1+8-124+6-1=0.

Lecture Notes 155 CMSC 754



Although the formal proof of Euler’s relation is rather coey there is a very easy way to see why its true.
First, consider the simplest polytope, nameljrsimplex, as the base case. (This is easy to see if you rbeaall t
for a simplexn; = (ﬁ[}) If you take the expressiofi — 1)4*+! and expand it symbolically (as you would for
example for(a +b)? = a? + 2ab+ b%) you will get exactly the sum in Euler’s formula. Cleatly— 1)4+! = 0.

The induction part of the proof comes by observing that ireomiaking a complex polytope out of a simple
one, essentially involves a series of splitting operatEvery time you split a face of dimensighyou do so by
adding a face of dimensioh— 1. Thus,n;_; andn; each increase by one, and so the value of the alternating
sum is unchanged.

Euler’s relation can be used to prove that the convex hullsgt@fr. points in 3-space ha3(n) edges and(n)
faces. However, what happens as dimension increases? Weaavié the following theorem. The remarkably
simple proof is originally due to Raimund Seidel. We willtstéhe theorem both in its original and dual form.

The Upper Bound Theorem: A polytope defined by the convex hull efpoints inR? hasO(nl4/2)) facets.

Upper Bound Theorem (Polar Form): A polytope defined by the intersectionohalfspaces ilR? hasO (n%/2])
vertices.

Proof: Itis not hard to show that among all polytopes, simplicidlypapes maximize the number of faces for
a given set of vertices and simple polytopes maximize thelmurof vertices for a given set of faces. We
will prove just the polar form of the theorem, and the othdt fellow by polar equivalence.

Consider a polytope defined by the intersectiomdfalfspaces in general position. Let us suppose by
convention that the;; axis is the vertical axis. Given a face, its highest verted lvest vertices are
defined as those having the maximum and minimtyneoordinates, respectively. (There are no ties if we
assume general position.)

The proof is based on a charging argument. We will place agehatreach vertex. We will then move the
charge for each vertex to a specially chosen incident facsuch a way that no face receives more than
two charges. Finally, we will show that the number of facea tieceive charges is at mastn.?/2]).

First, we claim that every vertexis either the highest or lowest vertex forjdace, wherej > [d/2].

To see this, recall that the for a simple polytope, the nedghdiod immediately surrounding any vertex is
isomorphic to a simplex. Thus,is incident to exactlyl edges (1-faces). (See Fig. 151 for an example in
dimension 5.) Consider a horizontal (that is, orthogonal fphyperplane passing through Since there
ared edges in all, at leagid/2] of these edges must lie on the same side of this hyperplayegdBeral
position we may assume that no edge lies exactly on the higoerp

As we observed earlier in the lecture, the local neighbodhaimout each vertex of a simple polytope is
isomorphic to a simplex, which imples that there is a faceiofethsion at leasfd/2]| that spans these
edges and is incident ta Thereforeyp is the lowest or highest vertex for this face. We charge thie f
for the charge on vertex. Thus, we may charge every vertex of the polytope to face miedsion at
least[d/2], and every such face will be charged at most twice (once Hgwtsst and once by its highest
vertex).

__..~This 3—face gets v's charge

X4

Fig. 151: Proof of the Upper Bound Theorem in dimension 5hig tase the three edges abowspan a 3-face whose
lowest vertex is.

All that remains is to count the number of faces that have lohanged and multiply by 2. Recalling our
earlier lemma on the naive bound on the numbej-tdces of a simple polytope with facets is(dﬁj).

Lecture Notes 156 CMSC 754



(Eachj-face is arises from the intersection ®f j hyperplanes and this is number @f — j)-element
subsets of hyerplanes.) Summing this up over all the facdsm#nsion[d/2] and higher we find that the

number of vertices is at most .
n
2 .
2 (d —j)

j=[d/2]
By changing the summation index ko= d — j and making the observation thg) is O(n"*), we have
that the number of vertices is at most

L2, Ld/2]
_ k
2y (1) = X 0w,
k=0 k=0
This is a geometric series, and so is dominated asymptigtimaits largest term. Therefore it follows that
the number of charges, that is, the number of vertices is at mo

O (ntd/%) ,
and this completes the proof.

Is this bound tight? Yesitis. There is a family of polytopess)edcyclic polytopeswhich match this asymptotic
bound. (See Boissonnat and Yvinec for a definition and pyroof.

Lecture 35: Planar Graphs, Polygons and Art Galleries

Topological Information: In many applications of segment intersection problems, kgenat interested in just a
listing of the segment intersections, but want to know hogvsbagments are connected together. Typically, the
plane has been subdivided into regions, and we want to dtesetregions in a way that allows us to reason
about their properties efficiently.

This leads to the concept ofgdanar straight line grapi(PSLG) orplanar subdivisior(or what might be called
acell complexn topology). A PSLG is a graph embedded in the plane withgttdine edges so that no two
edges intersect, except possibly at their endpoints. (®hdition that the edges be straight line segments may
be relaxed to allow curved segments, but we will assume Bgenents here.) Such a graph naturally subdivides
the plane into regions. The 0-dimensiomattices 1-dimensionakdgesand 2-dimensiondhces We consider
these three types of objects to be disjoint, implying eaaleed topologically open (it does not include it
endpoints) and that each face is open (it does not includmiisdary). There is always one unbounded face,
that stretches to infinity. Note that the underlying planapsp need not be a connected graph. In particular,
faces may contain holes (and these holes may contain othes. % subdivision is called eonvex subdivision

if all the faces are convex.

Fig. 152: Planar straight-line subdivision.

vertex

face

convex subdivision

Planar subdivisions form the basic objects of many diffestructures that we will discuss later this semester
(triangulations and Voronoi diagrams in particular) satBia good time to consider them in greater detail. The
first question is how should we represent such structurelsetdtiey are easy to manipulate and reason about.
For example, at a minimum we would like to be able to list thgesdthat bound each face of the subdivision in
cyclic order, and we would like to be able to list the edges shiaround each vertex.

Lecture Notes 157 CMSC 754



Planar graphs: There are a number of important facts about planar graphsvihahould discuss. Generally speak-
ing, an (undirectedyraphis just a finite set of vertices, and collection of unorderad9of distinct vertices
callededges A graph isplanar if it can be drawn in the plane (the edges need not be strdigg)lso that no
two distinct edges cross each other. émbeddingf a planar graph is any such drawing. In fact, in specify-
ing an embedding it is sufficient just to specify the courtakwise cyclic list of the edges that are incident
to each vertex. Since we are interested in geometric grapimgmbeddings will contain complete geometric
information (coordinates of vertices in particular).

There is an important relationship between the number dfces; edges, and faces in a planar graph (or more
generally an embedding of any graph on a topological 2-rolthibut we will stick to the plane). Lét” denote
the number of verticesty the number of edged; the number of faces in a connected planar graph. Euler's
formula states that

V-_-E+F=2

The quantityl — E + F is called theEuler characteristicand is an invariant of the plane. In general, given a
orientable topological 2-manifold witl handles (called thgenug we have

V-E+F=2-2g.

Returning to planar graphs, if we allow the graph to be disesoted, and lef’ denote the number of connected
components, then we have the somewhat more general formula

V—-FE+F-C=1.

In our example above we havé = 13, £ = 12, F' = 4 andC = 4, which clearly satisfies this formula. An
important fact about planar graphs follows from this.

Theorem: A planar graph with/ vertices has at mos{V — 2) edges and at mo8{V — 2) faces.

Proof: We assume (as is typical for graphs) that there are no meikigtes between the same pair of vertices
and no self-loop edges.
We begin bytriangulatingthe graph. For each face that is bounded by more than thress ¢dgwhose
boundary is not connected) we repeatedly insert new eddégwery face in the graph is bounded by ex-
actly three edges. (Note that this is not a “straight linglnalr graph, but it is a planar graph, nonetheless.)
An example is shown in the figure below in which the originamjr edges are shown as solid lines.

Fig. 153: Triangulating a planar graph.

Let E/ > E andF’ > F denote the number edges and faces in the modified graph. $tkimg graph
has the property that it has one connected component, exesyis bounded by exactly three edges, and
each edge has a different face on either side of it. (The lashaenay involve a little thought.)

If we count the number of faces and multiply by 3, then evergeedill be counted exactly twice, once
by the face on either side of the edge. THRIE, = 2F’, that isE’ = 3F’/2. Euler’s formula states that
V 4+ E' — F' =2, and hence

3F’

vV —
2

+F =2 = F<F =2V-2),

Lecture Notes 158 CMSC 754



and using the face th&’ = 2F’/3 we have

2F'

This completes the proof.

The fact that the numbers of vertices, edges, and faces lateddy constant factors seems to hold only in
2-dimensional space. For example, a polyhedral subdivisfo3-dimensional space that hasvertices can
have as many a®(n?) edges. (As a challenging exercise, you might try to creaée)olm general, there are
formulas, called th®ehn-Sommerville equatiotisat relate the maximum numbers of vertices, edges, and face
of various dimensions.

There are a number of reasonable representations thadforggPSLGs. The most widely used on is thiaged-
edge data structureUnfortunately, it is probably also the messiest. Theren®lzer called thejuad-edge data
structurewhich is quite elegant, and has the nice property of beinfgdgell. (We will discuss duality later in
the semester.) We will not discuss any of these, but see wiiorea presentation of théoubly-connected edge
list (or DCEL) structure.

Simple Polygons: Now, let us change directions, and consider some integeptioblems involving polygons in the
plane. We begin study of the problem of triangulating polygoWe introduce this problem by way of a cute
example in the field of combinatorial geometry.

We begin with some definitions. polygonal curves a finite sequence of line segments, cakeldegoined
end-to-end. The endpoints of the edges\adices For example, letg, vs, ..., v, denote the set of + 1
vertices, and letq, e, . . . , ¢, denote a sequence ofedges, where; = v;_1v;. A polygonal curve ilosed
if the last endpoint equals the firs§ = v,,. A polygonal curve isimpleif it is not self-intersecting. More
precisely this means that each edgeloes not intersect any other edge, except for the endpoistisies with
its adjacent edges.

Vg V,

0
V3
\'
1 v
4 Vg

polygonal curve closed but not simple simple polygon

V

Fig. 154: Polygonal curves

The famouslordan curve theorerstates that every simple closed plane curve divides thepida two regions
(theinterior and theexterior). (Although the theorem seems intuitively obvious, it istgulifficult to prove.)
We define golygonto be the region of the plane bounded by a simple, closed poblgurve. The terrimple
polygonis also often used to emphasize the simplicity of the poladonrve. We will assume that the vertices
are listed in counterclockwise order around the boundatii@polygon.

Art Gallery Problem: We say that two points andy in a simple polygon caseeeach other (of andy arevisible)
if the open line segmenty lies entirely within the interior of?. (Note that such a line segment can start and
end on the boundary of the polygon, but it cannot pass thrangtvertices or edges.)

If we think of a polygon as the floor plan of an art gallery, ddes the problem of where to place “guards”,
and how many guards to place, so that every point of the gatkam be seen by some guard. Victor Klee posed
the following question: Suppose we have an art gallery whilogg plan can be modeled as a polygon with
n vertices. As a function of., what is the minimum number of guards that suffice to guardh sugallery?
Observe that are you are told about the polygon is the nunilsédes, not its actual structure. We want to know
the fewest number of guards that suffice to guatgolygons withn sides.

Before getting into a solution, let's consider some basttsta Could there be polygons for which no finite
number of guards suffice? It turns out that the answer is nbtHeuproof is not immediately obvious. You

Lecture Notes 159 CMSC 754



U

A guarding set A polygon requiring n/3 guards

Fig. 155: Guarding sets.

might consider placing a guard at each of the vertices. Sus#t af guards will suffice in the plane. But to
show how counterintuitive geometry can be, it is interestmnot that there are simple nonconvex polyhedra in
3-space, such that even if you place a guard at every verggg thiould still be points in the polygon that are
not visible to any guard. (As a challenge, try to come up witk with the fewest number of vertices.)

An interesting question in combinatorial geometry is howslthe number of guards needed to guard any simple
polygon withn sides grow as a function af? If you play around with the problem for a while (trying pobrs

with n = 3,4,5,6... sides, for example) you will eventually come to the conduoghat|n/3] is the right
value. The figure above shows a worst-case example, whet¥® guards are required. A cute result from
combinatorial geometry is that this number always sufficEse proof is based on three concepts: polygon
triangulation, dual graphs, and graph coloring. The relaalgkclever and simple proof was discovered by Fisk.

Theorem: (The Art-Gallery Theorem) Given a simple polygon witlvertices, there exists a guarding set with
at most|n/3] guards.

Before giving the proof, we explore some aspects of polygangulations. We begin by introducing a triangu-
lation of P. A triangulationof a simple polygon is a planar subdivision of (the interifjr B whose vertices are
the vertices ofP and whose faces are all triangles. An important concept lygoo triangulation is the notion
of adiagonal that is, a line segment between two verticeg’ahat are visible to one another. A triangulation
can be viewed as the union of the edge$’aind a maximal set of noncrossing diagonals.

Lemma: Every simple polygon with vertices has a triangulation consistingrof- 3 diagonals andv — 2
triangles.

(We leave the proof as an exercise.) The proof is based omathé¢hfat given any.-vertex polygon, withn > 4

it has a diagonal. (This may seem utterly trivial, but adyuakes a little bit of work to prove. In fact it fails to
hold for polyhedra in 3-space.) The addition of the diagdmabks the polygon into two polygons, of say
andms, vertices, such that; + mo = n + 2 (since both share the vertices of the diagonal). Thus bydiiaiy,
there arglmy — 2) + (m2 — 2) = n + 2 — 4 = n — 2 triangles total. A similar argument holds for the case of
diagonals.

It is a well known fact from graph theory that any planar grajin be colored with 4 colors. (The famous
4-color theoren) This means that we can assign a color to each of the vedfdie graph, from a collection
of 4 different colors, so that no two adjacent vertices h&rgesame color. However we can do even better for
the graph we have just described.

Fig. 156: Polygon triangulation and a 3-coloring.

Lecture Notes 160 CMSC 754



Lemma: LetT be the triangulation graph of a triangulation of a simpleygoh. Therl" is 3-colorable.

Proof: For every planar graptr there is another planar gragh* called itsdual. The dualG* is the graph
whose vertices are the faceg®@fand two vertices of* are connected by an edge if the two corresponding
faces ofG share a common edge.

Since a triangulation is a planar graph, it has a dual, showthe figure below. (We do not include the
external face in the dual.) Because each diagonal of thegtmiation splits the polygon into two, it follows
that each edge of the dual graph isut edge meaning that its deletion would disconnect the graph. As a
resultitis easy to see that the dual graphfiga tree(that is, a connected, acyclic graph), and its maximum
degree is 3. (This would not be true if the polygon had holes.)

Fig. 157: Dual graph of triangulation.

The coloring will be performed inductively. If the polygonrtsists of a single triangle, then just assign any
3 colors to its vertices. An important fact about any free iethat it has at least one leaf (in fact it has at
least two). Remove this leaf from the tree. This correspomdsmoving a triangle that is connected to the
rest triangulation by a single edge. (Such a triangle iedadin ear.) By induction 3-color the remaining
triangulation. When you add back the deleted triangle, twitsofertices have already been colored, and
the remaining vertex is adjacent to only these two verti€gise it the remaining color. In this way the
entire triangulation will be 3-colored.

We can now give the simple proof of the guarding theorem.

Proof: (of the Art-Gallery Theorem:) Consider any 3-coloring of trertices of the polygon. At least one color
occurs at mostn /3| time. (Otherwise we immediately get there are more thaartices, a contradiction.)
Place a guard at each vertex with this color. We use at mosi| guards. Observe that every triangle
has at least one vertex of each of the tree colors (since ymwtase the same color twice on a triangle).
Thus, every point in the interior of this triangle is guardedplying that the interior ofP is guarded. A
somewhat messy detail is whether you allow guards placedvattax to see along the wall. However,
it is not a difficult matter to push each guard infinitesimadlyt from his vertex, and so guard the entire

polygon.

Lecture Notes 161 CMSC 754



