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Abstract

Erasure coding becomes a practical redundancy technique
for distributed storage systems to achieve fault tolerance with
low storage overhead. Given its popularity, research stud-
ies have proposed theoretically proven erasure codes or effi-
cient repair algorithms to make erasure coding more viable.
However, integrating new erasure coding solutions into ex-
isting distributed storage systems is a challenging task and
requires non-trivial re-engineering of the underlying storage
workflows. We present OpenEC, a unified and configurable
framework for readily deploying a variety of erasure coding
solutions into existing distributed storage systems. OpenEC
decouples erasure coding management from the storage work-
flows of distributed storage systems, and provides erasure
coding designers with configurable controls of erasure coding
operations through a directed-acyclic-graph-based program-
ming abstraction. We prototype OpenEC on two versions
of HDFS with limited code modifications. Experiments on a
local cluster and Amazon EC2 show that OpenEC preserves
both the operational performance and the properties of erasure
coding solutions; OpenEC can also automatically optimize
erasure coding operations to improve repair performance.

1 Introduction
Erasure coding provides a low-cost redundancy mechanism
for fault-tolerant storage, and is now widely deployed in
today’s distributed storage systems (DSSs). Examples in-
clude enterprise-level DSSs [15,21,30] and many open-source
DSSs [1, 3, 7, 31, 54, 55]. Unlike replication that simply cre-
ates identical data copies for redundancy protection, erasure
coding introduces much less storage overhead through the
coding operations of data copies, while preserving the same
degree of fault tolerance [53]. Modern DSSs mostly realize
erasure coding based on the classical Reed-Solomon (RS)
codes [43], yet RS codes have high performance penalty, es-
pecially in repairing lost data when failures happen. Thus,
research studies have proposed new erasure coding solutions
with improved performance, such as erasure codes with the-
oretical guarantees and efficient repair algorithms that are
applicable to general erasure-coding-based storage (§6).

However, deploying new erasure coding solutions in DSSs
is a daunting task. Existing studies often integrate new era-
sure coding solutions into specific DSSs by re-engineering
the DSS workflows (e.g., the read/write paths). The tight

coupling between erasure coding management and the DSS
workflows makes new erasure coding solutions hard to be gen-
eralized for other DSSs and further enhanced. Some DSSs
with built-in erasure coding features (e.g., HDFS with era-
sure coding [1, 5], Ceph [54], and Swift [7]) provide certain
configuration capabilities, such as interfaces for implement-
ing various erasure codes and controlling erasure-coded data
placement, yet the interfaces are rather limited and it is non-
trivial to extend the DSSs with more advanced erasure codes
and repair algorithms (§2.2). How to fully realize the power
of erasure coding in DSSs remains a challenging issue.

We present OpenEC, a unified and configurable frame-
work for erasure coding management in DSSs, with the pri-
mary goal of bridging the gap between designing new erasure
coding solutions and enabling the feasible deployment of
such new solutions in DSSs. Inspired by software-defined
storage [16, 48, 51], which aims for configurable storage man-
agement without being constrained by the underlying storage
architecture, we apply this concept into erasure coding man-
agement. Our main idea is to decouple erasure coding man-
agement from the DSS workflows. Specifically, OpenEC
runs as a middleware system between upper-layer applications
and the underlying DSS, and is responsible for performing
all erasure coding operations on behalf of the DSS. Such a
design relaxes the stringent dependence on the erasure cod-
ing support of DSSs. More importantly, OpenEC takes the
full responsibility of erasure coding management, and hence
provides flexibility for erasure coding designers to (i) incor-
porate a variety of erasure coding solutions, (ii) configure
the workflows of erasure coding operations, and (iii) decide
the placement of both erasure-coded data and erasure cod-
ing operations across storage nodes. Our contributions are
summarized as follows:
• We propose a new programming model for erasure coding

implementation and deployment. Our model builds on an
abstraction called an ECDAG, a directed acyclic graph that
defines the workflows of erasure coding operations. We
show how we feasibly realize a general erasure coding
solution through the ECDAG abstraction.

• We design OpenEC, which translates an ECDAG into
erasure coding operations atop a DSS. OpenEC supports
encoding operations on or off the write path as well as
various state-of-the-art repair operations. In particular, it
can automatically optimize an ECDAG for hierarchical
topologies to improve repair performance.



• We implement a prototype of OpenEC on HDFS-RAID
[5] and Hadoop 3.0 HDFS (HDFS-3) [1]. Its integrations
into HDFS-RAID and HDFS-3 only require limited code
changes (with no more than 450 LoC).

• We evaluate OpenEC on a local cluster and Amazon EC2.
OpenEC incurs negligible performance overhead in DSS
operations, supports various state-of-the-art erasure codes
and repair algorithms, and increases the repair through-
put by at least 82% through automatically customizing an
ECDAG for a hierarchical topology.

The source code of our OpenEC prototype is available at:
http://adslab.cse.cuhk.edu.hk/software/openec.

2 Background and Motivation
2.1 Erasure Coding Basics
Consider a DSS that comprises multiple storage nodes and
organizes data in units of blocks. We construct erasure coding
as an (n,k) code with two configurable parameters n and k,
where k < n. For every k fixed-size original blocks (called
data blocks), an (n,k) code encodes them into n−k redundant
blocks of the same size (called parity blocks), such that any
k out of the n erasure-coded blocks (including both data and
parity blocks) can decode the k data blocks; that is, any n− k
block failures can be tolerated. We call the collection of n
erasure-coded blocks a coding group. A DSS encodes differ-
ent sets of k data blocks independently, and distributes the n
erasure-coded blocks of each coding group across n storage
nodes to protect against any n− k storage node failures. In
this paper, our discussion focuses on the coding operations
(i.e., encoding or decoding) of a single coding group.

For performance reasons, a DSS implements coding opera-
tions in small-size units called packets, while the read/write
units are in blocks; for example, our experiments set the
default packet and block sizes as 128 KiB and 64 MiB, respec-
tively). It divides a block into multiple packets, and encodes
the packets at the same block offsets in a coding group to-
gether. Thus, instead of first reading the whole blocks to start
coding operations, a DSS can perform packet-level coding
operations, while reading the whole blocks, in a pipelined
manner. To simplify our discussion, we use blocks as the
units of coding operations, and only differentiate packets and
blocks in our implementation (§4.5).

Given the prevalence of failures, repairs are frequent op-
erations in DSSs [40]. We consider two types of repairs: (i)
degraded reads, which decode the unavailable data blocks
that are being requested, and (ii) full-node recovery, which
decodes all lost blocks of a failed storage node. Since re-
pairs trigger substantial traffic [40], achieving high repair
performance is important in erasure coding deployment. RS
codes [43] are the most popular erasure codes that are widely
used in production [5, 7, 15, 31, 54, 55], but they incur high
repair costs. Thus, many repair-friendly erasure codes have
been proposed. Since single-failure repairs (i.e., repairing a

single lost block of a coding group in degraded reads or a
single failed node in full-node recovery) are the most com-
mon repair scenarios [21, 40], existing repair-friendly erasure
codes aim to minimize the repair bandwidth or I/O in single-
failure repairs. Examples are regenerating codes [14], in-
cluding minimum-storage regenerating (MSR) and minimum-
bandwidth regenerating (MBR) codes, as well as locally re-
pairable codes (LRCs) [21, 23, 44, 49].

Our work focuses on practical erasure codes. In particular,
we target linear codes, which include RS codes, MSR and
MBR codes, as well as LRCs. Linear codes perform linear
coding operations based on the Galois field arithmetic [17].
Mathematically, for an (n,k) code, let d0, · · · ,dk−1 be the k
data blocks, and p0, · · · , pn−k−1 be the n− k parity blocks.
Each parity block p j (0 ≤ j ≤ n− k− 1) can be expressed
as p j = ∑

k−1
i=0 γ jidi, where γ ji is some coding coefficient for

computing p j. Note that the linear operations are additive
associative (i.e., independent of how additions are grouped).

Also, our work addresses sub-packetization, which is used
in various designs of MSR and MBR codes [14, 18, 32, 39, 42,
45,50,52]. Sub-packetization divides each block into smaller-
size sub-blocks, so that repairs can be done by retrieving
sub-blocks rather than whole blocks.

Most DSSs assume that all erasure-coded blocks are im-
mutable and do not support in-place updates. Thus, we focus
on four basic operations: writes, normal reads, degraded
reads, and full-node recovery (§4.2), while we address in-
place updates in future work.

2.2 Limitations of Erasure Coding Management
Modern DSSs now support erasure coding, yet existing era-
sure coding management in such DSSs remains stringent and
still faces practical limitations. To motivate our study, we
review six state-of-the-art DSSs that currently realize erasure-
coded storage: HDFS-RAID [5], HDFS-3 [1], QFS [31],
Tahoe-LAFS [55], Ceph [54], and Swift [7]. HDFS-RAID is
the erasure coding extension of HDFS [46] in the earlier ver-
sion of Hadoop. Here, we focus on Facebook’s HDFS-RAID
implementation [3], which builds on Hadoop version 0.20.
HDFS-3 builds on the newer Hadoop version 3.0, which in-
cludes erasure coding by design. QFS resembles HDFS and
includes erasure coding by design. All HDFS-RAID, HDFS-
3, and QFS organize data in fixed-size blocks. In contrast,
Tahoe-LAFS, Ceph, and Swift organize data in variable-size
objects and partition each object into equal-size data blocks
for erasure coding.

(L1) Limited support for adding advanced erasure codes:
Existing DSSs provide encoding/decoding interfaces for im-
plementing new erasure codes. However, most DSSs do
not provide interfaces for adding erasure codes with sub-
packetization (e.g., MSR and MBR codes [14, 18, 32, 39, 42,
45, 50, 52]) and handling erasure-coded blocks at the granu-
larity of sub-blocks, while only recently Ceph includes the
sub-packetization feature in its master codebase [52]. Also,
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recent erasure codes [19,38] address the hierarchical nature of
DSSs to reduce cross-rack [19] (or cross-cluster [38]) repair
traffic, yet realizing such hierarchy-aware erasure codes needs
modifications to the DSS workflows.
(L2) Limited configurability for workflows of coding op-
erations: Enabling configurable workflows of coding opera-
tions allows better resource usage within a DSS. Take repairs
(degraded reads or full-node recovery) as an example. DSSs
execute repairs at different entities upon the detection of fail-
ures. For a degraded read, it is executed at the client (in
HDFS-RAID, HDFS-3, QFS, and Tahoe-LAFS), the proxy
(in Swift), or a storage node (in Ceph); for full-node recovery,
it is executed at either storage nodes (in HDFS-RAID, HDFS-
3, QFS, Ceph, and Swift) or the client (in Tahoe-LAFS). Both
degraded reads and full-node recovery operate in a fetch-and-
compute manner, in which the entity that executes the repair
will retrieve available blocks from other non-failed storage
nodes and reconstruct the lost blocks. On the other hand, be-
sides the fetch-and-compute approach, we cannot configure
a DSS to adopt different repair workflows or distribute the
repair loads across storage nodes. For example, recent repair
algorithms [25,29] decompose a single-block repair operation
into partial sub-block repair operations that are parallelized
across storage nodes for better bandwidth usage, but existing
DSSs do not support this feature by design.
(L3) Limited configurability for placement of coding op-
erations: All DSSs we consider ensure that the n erasure-
coded blocks of each coding group are stored in n distinct
storage nodes, and most of them additionally allow config-
urable block placement. For example, both HDFS-RAID and
HDFS-3 provide a base class for configuring block placement
policies; QFS provides an in-rack placement option to store
multiple blocks in a rack; Ceph uses placement groups, while
Swift uses object rings, to control how erasure-coded blocks
are placed in different storage nodes.

However, existing DSSs focus on how erasure-coded
blocks are placed after encoding, but do not specify where
to perform the coding operations. For example, in encod-
ing operations, we may want to co-locate the computations
of parity blocks at one storage node (rather than distribute
the computations across different storage nodes) to limit the
I/Os of retrieving data blocks. Also, the repair algorithms
in [25,29] require some storage nodes that store available data
blocks to first compute partially decoded blocks and send the
results to other storage nodes for further decoding. In this
case, we need to place the partial decoding operations at spe-
cific storage nodes. Such fine-grained placement of coding
operations is currently not supported in existing DSSs.

2.3 Lessons Learned and Goals
The root cause of the limitations in §2.2 is that the current
erasure coding management is tightly coupled with the DSS
workflows. Realizing erasure coding in DSSs needs to ad-
dress how coding operations are performed (i.e., the control

flow) and how erasure-coded blocks are stored and accessed
(i.e., the data flow). The current practice is that erasure coding
designers only define an erasure code and its coding opera-
tions (e.g., the coding coefficients used in coding operations),
while DSS developers require dedicated engineering efforts
to integrate the coding operations into the read/write paths of
DSSs without compromising the correctness of upper-layer
applications. Such tight coupling makes the extensions of
erasure coding features inflexible.

OpenEC decouples erasure coding management from the
underlying DSS by providing a unified and configurable
framework for erasure coding management, such that era-
sure coding designers can leverage OpenEC to realize new
erasure coding solutions and configure the workflows of cod-
ing operations, without worrying how they are integrated into
the DSS workflows. Specifically, OpenEC addresses the
limitations in §2.2 with the following goals: (i) extensibility
of new erasure codes; (ii) configurable workflows of coding
operations; and (iii) configurable placement of both erasure-
coded blocks and coding operations. To achieve these goals,
OpenEC builds on a programming model for erasure coding
management, as elaborated in the following sections.

3 Programming Model
We propose a programming model that allows erasure coding
designers to not only define an erasure code structure and its
coding operations, but also configure how coding operations
are performed in a DSS. We present a new erasure coding
abstraction called an ECDAG (§3.1), followed by three primi-
tives for constructing an ECDAG (§3.2). We then propose a
programming interface for realizing an erasure code based on
the ECDAG abstraction (§3.3).

3.1 ECDAG Overview
At a high level, an ECDAG is a directed acyclic graph that de-
scribes the workflows of coding operations of a coding group
of an erasure code. Each vertex represents a block in the cod-
ing group, and the connections among vertices describe how
vertices are related by linear combinations. To address the
limitations in §2.2, we design ECDAGs to work for general
linear codes (L1 addressed). Also, we can construct different
ECDAGs to configure how and where coding operations are
performed (L2 and L3 addressed, respectively).

Consider a coding group of an (n,k) code with n erasure-
coded blocks; to simplify our discussion, we do not con-
sider sub-packetization first. We index the blocks from 0 to
n−1, and let bi denote the block with index i. Without loss
of generality, we refer to b0, · · · ,bk−1 as k data blocks, and
bk, · · · ,bn−1 as n−k parity blocks. In some cases (see below),
the coding operations may generate some intermediately com-
puted blocks that will not be finally stored (as opposed to
blocks b0,b1, · · · ,bn−1). We call such blocks virtual blocks,
and denote a virtual block by bi′ for some i′ ≥ n.

In an ECDAG, let vi (i≥ 0) be a vertex that maps to block
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Figure 1: Example of an ECDAG for a (5,4) code.
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Figure 2: Example for an ECDAG for a (4,2) code with w = 2.

bi; we call a vertex vi′ (i′ ≥ n) that maps to a virtual block bi′

a virtual vertex. Let ei, j (i, j ≥ 0) be a directed edge from vi
to v j indicating that bi is an input to the linear combination
for computing b j. Each edge is associated with a coding
coefficient for the linear combination. If there exists an edge
ei, j, we say that v j is the parent of vi, while vi is a child of v j.
A vertex can have any number of parents and children.

Both encoding and decoding operations are each associated
with an ECDAG. The ECDAG for encoding is constructed at
the beginning of the encoding operation to describe how data
blocks are linearly combined to form each parity block. In
contrast, the ECDAG for decoding is constructed on demand
depending on what blocks are currently available.

For example, consider a (5,4) code (i.e., (4+1)-RAID-5).
Figure 1(a) shows the ECDAG for the encoding operation,
which states that the parity block b4 is a linear combination
of the four data blocks b0, b1, b2, and b3. Suppose now
that block b0 is lost. Figure 1(b) shows the ECDAG for the
decoding operation for b0, which can be computed from other
available blocks b1, b2, b3, and b4.

We can parallelize partial decoding operations as in PPR
[29] by constructing another ECDAG for decoding b0 (see
Figure 1(c)), in which we first compute in parallel the partially
decoded blocks b5 and b6 (both of which are virtual blocks)
from b1 and b2 and from b3 and b4, respectively, followed
by computing b0 from b5 and b6. This shows that we can
flexibly configure coding operations by constructing different
ECDAGs. Note that PPR needs to compute b5 and b6 at the
storage nodes where data blocks (e.g., b2 and b4, respectively)
are stored (see [29] for details). We address this issue in §3.2.

We can also construct an ECDAG for erasure codes with
sub-packetization. Let w be the number of sub-blocks per
block (w = 1 means no sub-packetization). We index the
sub-blocks of block b0 from 0 to w−1, those of b1 from w
to 2w−1, and so on. Each vertex vi (i≥ 0) now corresponds
to the sub-block with index i, while any vertex vi′ for i′ ≥ nw
is a virtual vertex. For example, consider the (4,2) MISER
code [45] (an MSR code based on interference alignment),
where w = 2. Figure 2(a) shows how the sub-blocks are

void Join(int pidx, vector<int> cidxs, vector<int> coefs);

int BindX(vector<int> idxs);

void BindY(int pidx, int cidx);

Listing 1: Primitives for ECDAG construction.

indexed. Figure 2(b) shows the ECDAG for the encoding
operation, in which the sub-blocks of parity blocks b2 and b3
are computed from the sub-blocks of data blocks b0 and b1.
Suppose that block b0 is lost. Figure 2(c) shows the ECDAG
for decoding b0 based on MISER codes [45], in which we first
compute an encoded sub-block from each of other available
blocks b1, b2, and b3 (represented by the virtual vertices v8,
v9, and v10, respectively), followed by using the encoded
sub-blocks to decode the lost sub-blocks of b0.

3.2 ECDAG Primitives
An ECDAG can be constructed from three primitives: Join,
BindX, and BindY. Join is used for constructing an ECDAG,
while BindX and BindY control the placement of coding
operations. Listing 1 shows their definitions in C++ format.

Join: It specifies how a parent vertex (with index pidx) is
formed by the linear combinations of a list of child vertices
(with indices in cidxs) and the corresponding coding coeffi-
cients (in coefs). For example, we deploy the (6,4) RS code
and encode four data blocks b0, b1, b2, and b3 into two new
parity blocks b4 and b5. We can construct an ECDAG with
Join as follows (see Figure 3(a)):

ECDAG* ecdag = new ECDAG();

ecdag->Join(4, {0,1,2,3}, {1,1,1,1});

ecdag->Join(5, {0,1,2,3}, {1,2,4,8});

BindX: It co-locates the coding operations of multiple ver-
tices (with indices in idxs) that reside at the same level of an
ECDAG (i.e., in the x-direction), so as to reduce I/O in coding
operations. For example, in Figure 3(a), suppose that the data
blocks being encoded are stored in different storage nodes.
Without BindX, we need to compute b4 and b5 separately and
retrieve each data block twice. Instead, we can call BindX on
vertices v4 and v5 to create a new virtual vertex v6 as follows
(see Figure 3(b)):

int vidx = ecdag->BindX({4,5});

This indicates that blocks b4 and b5 are first computed to-
gether at the same storage node before being distributed to
different storage nodes. Now we only need to retrieve each
data block once. Note that the index of v6 (i.e., 6) is generated
randomly and returned as vidx by BindX.

BindY: It co-locates the coding operations of a parent vertex
(with index pidx) and its child vertex (with index cidx) at
different levels (i.e., in the y-direction). Consider the same
example in Figure 3(b) after we call BindX. We can call
BindY on vertices v0 and v6 as follows (see Figure 3(c)):

ecdag->BindY(vidx, 0);
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Figure 3: Construction of ECDAGs for the (6,4) RS code.

class ECBase {

int n, k, w; // coding parameters

vector<int> ecoefs; // encoding coefficients

public:

ECDAG* Encode();

ECDAG* Decode(vector<int> from, vector<int> to);

vector<vector<int>> Place();

};

Listing 2: Erasure coding programming interface.

Thus, we compute parity blocks b4 and b5 at the same storage
node that stores b0, thereby saving the I/Os of retrieving b0.

Note that BindY enables us to implement the repair algo-
rithms (e.g., PPR [29] and repair pipelining [25]) that need
to compute partially decoded blocks at the storage nodes that
store the data blocks. For example, referring to Figure 1(c)
for PPR, we can call BindY on v2 and v5, and on v4 and v6, to
co-locate the computations of the partially decoded blocks b4
and b5 at the storage nodes that store b2 and b4, respectively.

Remarks: We provide flexibility for erasure coding designers
to construct any ECDAG using the above three primitives,
yet this also puts burdens on erasure coding designers to
configure coding operations. Nevertheless, OpenEC can
also automatically call BindX and BindY on some specific
subgraph structures of an ECDAG (§4.4).

3.3 Erasure Coding Interfaces
We provide a programming interface for realizing an erasure
code. Unlike the traditional approach that takes data blocks
as input and generates parity blocks, we program an erasure
code through the construction of ECDAGs. OpenEC then
parses the ECDAGs to perform the actual coding operations
and store the erasure-coded blocks.

Listing 2 shows the erasure coding programming interface
as a base class ECBase. To realize an erasure code, we (as
erasure coding designers) inherit ECBase and first define all
necessary member variables (e.g., n, k, w, and encoding coeffi-
cients) in the constructor method as in traditional erasure code
programming. Note that we can store encoding coefficients
in a generator matrix [35] and compute decoding coefficients
later based on the available blocks. We then implement three
functions, namely Encode, Decode, and Place.

Encode: It constructs an ECDAG that describes the encoding
operation. For example, to encode the (6,4) RS code based
on Figure 3(c), we can construct an ECDAG as in Listing 3.

Decode: It constructs an ECDAG that takes the available
blocks (with indices in from) as input and decodes any lost

ECDAG* Encode() {

ECDAG* ecdag = new ECDAG();

ecdag->Join(4, {0,1,2,3}, {1,1,1,1});

ecdag->Join(5, {0,1,2,3}, {1,2,4,8});

int vidx = ecdag->BindX({4,5});

ecdag->BindY(vidx, 0);

return ecdag;

}

Listing 3: Encode function.

ECDAG* Decode(vector<int> from, vector<int> to) {

ECDAG* ecdag = new ECDAG();

vector<int> dcoefs; // decoding coefficients

// compute dcoefs based on the available blocks

ecdag->Join(to[0], from, dcoefs);

return ecdag;

}

Listing 4: Decode function.

vector<vector<int>> Place() {

vector<vector<int>> groups;

for (int i=0; i<n/2; ++i) groups[0].push_back(i);

for (int i=n/2; i<n; ++i) groups[1].push_back(i);

return groups;

}

Listing 5: Place function.

blocks (with indices in to). For example, we can implement
Decode for a single lost block as in Listing 4, in which the
decoding coefficients are computed based on the available
blocks in from. In general, Decode constructs an ECDAG
for one of the two scenarios: (i) decoding one lost block,
in which we can choose an efficient single-failure repair ap-
proach (e.g., see Figure 2(c) for the (4,2) MISER code); or
(ii) decoding multiple lost blocks, in which we can choose
any k available blocks (e.g., the first k blocks in from) to
compute the decoding coefficients and decode all lost blocks.

Place: It configures how erasure-coded blocks are placed
with hierarchy awareness. In addition to storing erasure-
coded blocks in different storage nodes, we can configure how
the blocks are grouped (e.g., in the same rack in rack-based
DSSs). This supports fine-grained block placement configura-
tions as in existing DSSs (§2.2), and allows the realization of
hierarchy-aware erasure codes [19, 38]. For example, we can
divide n erasure-coded blocks into two groups via Place as
in Listing 5. Note that BindX and BindY in ECDAG construc-
tion (§3.2) address the placement of coding operations, while
Place addresses the placement of erasure-coded blocks.

4 OpenEC Design
We design OpenEC to provide erasure coding management
for a DSS. We show its architecture (§4.1) and supported basic
operations (§4.2). We then describe how it parses ECDAGs to
realize coding operations (§4.3). We further show how it au-
tomatically optimizes coding operations (§4.4). We conclude
this section with the implementation details (§4.5).
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4.1 Architectural Overview
OpenEC runs as a middleware system atop a DSS. As a
proof of concept, we design OpenEC atop two implemen-
tations of HDFS [46]: HDFS-RAID [5] and HDFS-3 [1]1.
HDFS (including both HDFS-RAID and HDFS-3) comprises
a NameNode that coordinates the storage in units of blocks
across multiple DataNodes (storage nodes). Figure 4 shows
how OpenEC is integrated into HDFS. OpenEC comprises
a centralized controller, which coordinates multiple agents.
An application interacts with OpenEC via an OECClient.

Controller: The controller parses ECDAGs and instructs all
agents how to perform coding operations and store erasure-
coded blocks. It keeps erasure coding metadata and all
ECDAGs in local disk for persistence. There are three types
of metadata: (i) the information of blocks associated with
each file; (ii) the information of blocks associated with each
coding group; and (iii) the block locations. The controller
interacts with the NameNode in two aspects. First, it accesses
or updates the block locations of the NameNode to configure
the placement of blocks. Second, it receives the reports of
lost blocks from the NameNode and coordinates the repair
operations among the agents.

We assume that the controller is reliable (i.e., no single-
point-of-failure). Our measurements show that the controller
can serve a request of parsing an ECDAG for coding opera-
tions in less than 0.3 ms in our local cluster (§5), and hence it
incurs limited overhead to basic operations.

Agent: Each agent performs coding operations as instructed
by the controller. It accesses the erasure-coded blocks in
HDFS through the HDFS client interface. Note that agents
can communicate among themselves to perform coding op-
erations and exchange erasure-coded blocks. We currently
deploy each agent at a DataNode, so that the agent can access
the local storage of the DataNode without network transfers.

OECClient: Each OECClient is associated with an agent,
and serves as an interface between an upper-layer applica-
tion and the agent. It connects to the agent via Redis-based
communication (§4.5). An application now accesses HDFS
through an OECClient instead of an HDFS client.

1We also implement OpenEC atop QFS [31]. See [27] for details.

4.2 Basic Operations
OpenEC supports four basic operations: (i) writes; (ii) nor-
mal reads; (iii) degraded reads; and (iv) full-node recovery.
Writes: Note that HDFS-3 supports online encoding (i.e.,
clients perform encoding on the write path), while HDFS-
RAID supports offline encoding (i.e., clients first write the
data blocks in uncoded form, and the data blocks are later
encoded in the background). OpenEC is currently designed
to support both online and offline encoding. An OECClient
specifies which encoding mode to use in a write request. For
online encoding, OpenEC encodes data on a per-file basis.
When an OECClient writes a file, its agent encodes every k
data blocks into n− k parity blocks and writes the n erasure-
coded blocks to n DataNodes through the HDFS client. For
offline encoding, an OECClient first writes file data via its
agent to HDFS. When OpenEC receives an encoding request,
the controller parses the specified ECDAG (§4.3) and instructs
all agents to perform encoding, such that every k blocks are
encoded into n erasure-coded blocks as a coding group.
Normal reads: An OECClient issues normal reads (under no
failures) via its agent, which connects to the DataNodes that
store the uncoded data blocks and retrieves the data blocks
from the DataNodes.
Degraded reads: An OECClient issues degraded reads (un-
der failures) via its agent, which connects to non-failed DataN-
odes and retrieves the available blocks for decoding the lost
blocks based on the ECDAG specification.
Full-node recovery: The controller coordinates the full-node
recovery operation. When it receives a report of lost blocks
from the NameNode, it informs the agents to repair the lost
blocks based on the ECDAG specification.

4.3 Parsing an ECDAG
OpenEC parses ECDAGs to perform coding operations in
writes (online or offline encoding), degraded reads, and full-
node recovery. Given an ECDAG, OpenEC decomposes a
coding operation into multiple tasks, each of which is exe-
cuted by an agent. Each task operates in blocks (or sub-blocks
in sub-packetization). There are four types of tasks:

• Load: It loads a block into memory from the agent’s input
stream, which could be either the OECClient if the block
is from upper-layer applications, or the HDFS client if the
block is from HDFS.

• Fetch: It retrieves blocks from other agents.
• Compute: It computes a block based on the linear combi-

nation of blocks and coding coefficients.
• Persist: It either writes a block to HDFS via the HDFS

client, or returns the block to an OECClient.

Parsing procedure: OpenEC performs topological sorting
of an ECDAG (based on depth-first search) to identify the
vertex sequence of coding operations. It then assigns tasks to
each vertex based on the ECDAG structure. Depending on the



Vertices Nodes Tasks
v0 C Load b0
v1 C Load b1
v2 C Load b2
v3 C Load b3

v6 C

Compute b4 from {b0, b1, b2, b3} with
coding coefficients {1,1,1,1};

Compute b5 from {b0, b1, b2, b3} with
coding coefficients {1,2,4,8}

v4 C –
v5 C –

– C
Persist b0; Persist b1; Persist b2;
Persist b3; Persist b4; Persist b5

(a) Online encoding

Vertices Nodes Tasks
v0 N0 Load b0
v1 N1 Load b1
v2 N2 Load b2
v3 N3 Load b3

v6 N0

Fetch b1 from N1;
Fetch b2 from N2;
Fetch b3 from N3;
Compute b4 from {b0, b1, b2, b3} with

coding coefficients {1,1,1,1};
Compute b5 from {b0, b1, b2, b3} with

coding coefficients {1,2,4,8}
v4 N4 Fetch b4 from N0; Persist b4
v5 N5 Fetch b5 from N0; Persist b5

(b) Offline encoding

Table 1: Vertex sequence of coding operations, including the nodes
that are responsible for processing the vertices as well as the tasks
that are performed.

types of basic operations, OpenEC may perform coding op-
erations on the client side (for online encoding and degraded
reads) or distribute the coding operations across storage nodes
(for offline encoding and full-node recovery).

OpenEC associates tasks with different types of vertices.
At a high level, the Load task is associated with a vertex with-
out any child; the Fetch task is associated with a parent vertex
that has a child vertex; the Compute task is associated with a
vertex with more than one child for the linear combination;
the Persist task is associated with a vertex without any parent,
while it is also associated with a vertex without any child in
the case of online encoding (see the example below).
Example: We show the parsing procedure via an example.
Suppose that we encode four data blocks (i.e., b0, b1, b2,
and b3) to generate two parity blocks (i.e., b4 and b5) using
the (6,4) RS code, based on the ECDAG in Figure 3(c) and
the Encode function in Listing 3. Table 1 shows the vertex
sequence of tasks for both online and offline encoding.

For online encoding (see Table 1(a)), the client-side agent
(denoted by C) performs all coding operations. It finally
persists all data blocks and parity blocks into HDFS.

For offline encoding (see Table 1(b)), OpenEC distributes

the coding operations across storage nodes. To elaborate,
suppose that bi is stored in storage node Ni, for 0 ≤ i ≤ 5.
First, since v0, v1, v2, and v3 have no child, OpenEC creates
tasks for the agents in storage nodes N0, N1, N2, and N3 to
load the blocks b0, b1, b2, and b3, respectively, from HDFS
(via HDFS clients) into memory. Second, since vertex v6 is
created from BindX on vertices v4 and v5, OpenEC computes
both b4 and b5 from the blocks in the child vertices (i.e., b0,
b1, b2, and b3). Also, since BindY is called on v6 and v0,
OpenEC assigns the tasks of v6 to the agent in N0. Finally,
v4 and v5 retrieve blocks b4 and b5 from v6, respectively.
Since v4 and v5 have no parent and are the last vertices in the
topological order, they persist the blocks to HDFS.

Note that OpenEC can parallelize the coding operations
on the vertices that have no dependencies on others. For
example, OpenEC can simultaneously execute the tasks for
v0, v1, v2, and v3, and similarly the tasks for v4 and v5.

4.4 Automated Optimizations
In addition to letting erasure coding designers construct
ECDAGs, OpenEC can automatically customize ECDAGs
for performance optimizations to save manual configuration
efforts. We address this in two aspects.
Automated BindX and BindY: OpenEC can automatically
call BindX and BindY for some specific subgraph structures
of an ECDAG. For BindX, OpenEC examines all parent
vertices that have more than one child vertex in an ECDAG.
If multiple parent vertices have the same set of child vertices,
OpenEC calls BindX on those parent vertices (e.g., v4 and
v5 in Figure 3(b)). For BindY, for any parent vertex (with one
or more child vertices), OpenEC calls BindY on the parent
vertex and any one of the child vertices (e.g., the parent vertex
v6 and the child vertex v0 in Figure 3(c)).
Hierarchy awareness: OpenEC can further enhance the re-
pair performance based on the physical DSS topology. One
scenario is that a DSS hierarchically organizes storage nodes
in racks [19] (or clusters [38]), such that the cross-rack band-
width is much more constrained than the inner-rack band-
width. OpenEC can transform an ECDAG into a pipelined
ECDAG, so as to mitigate the cross-rack traffic. Our idea
is based on repair pipelining [25], which pipelines partial
coding operations across multiple storage nodes. We addition-
ally perform all partial coding operations within a rack before
sending the partial coding results to another rack. To illustrate,
suppose that we deploy an (n,k) RS code with k = 6. We
want to repair a lost block b0 from six other available blocks
b1, b2, b3, b4, b5, and b6, such that blocks b1, b3, and b5 are
in one rack, while blocks b2, b4, and b6 are in another rack.
We also want to store the reconstructed block b0 at the same
rack as b2, b4, and b6. The conventional repair approach is to
retrieve all six available blocks and construct an ECDAG as
in Figure 5(a). Then we need to transfer three blocks (i.e., b1,
b3, and b5) across racks. Instead, OpenEC can automatically
construct another ECDAG as in Figure 5(b), in which it first
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Figure 5: Example of constructing a pipelined ECDAG; vertices of
the same color mean that their blocks are in the same rack.

computes the partially decoded block b8 (corresponding to
vertex v8) based on b1, b3, and b5 in the same rack, followed
by combining b8 with b0, b2, and b4 in another rack to recon-
struct block b0. In this case, we only need to transfer one
block (i.e., b8) across racks.

4.5 Implementation
We implement an OpenEC prototype in C++ with around 7K
LoC. We use Intel’s Intelligent Storage Acceleration Library
(ISA-L) [6] to implement erasure coding functionalities. Here,
we highlight several implementation details of OpenEC.
From blocks to packets: OpenEC performs coding opera-
tions in units of packets to improve performance, while the
read/write operations are still in units of blocks (§2.1). By
default, the packet size is 128 KiB. For encoding (both online
and offline), OpenEC writes n erasure-coded packets to n
DataNodes; in the case of sub-packetization, each packet is
divided into sub-packets. If a DataNode receives an amount
of packet data equal to the HDFS block size (64 MiB by de-
fault), it seals the block and stores additional packets in a
different block. The n sealed erasure-coded blocks then form
a coding group. Note that while OpenEC is sending packets
to DataNodes, it can start encoding for the next group of pack-
ets. Thus, both the sending and encoding operations can be
done in parallel. Similarly, OpenEC performs decoding (for
degraded reads and full-node recovery) at the packet level.

As OpenEC performs packet-level coding operations, the
block layouts differ in online and offline encoding. For online
encoding, OpenEC adopts a striped layout as in HDFS-3 [4],
as it stripes file data across blocks at the granularities of
packets. For offline encoding, OpenEC adopts a contiguous
layout, as the file data is first stored in a block before encoding.
Figure 6 depicts both block layouts.
Internal communication: OpenEC uses Redis [8] for inter-
nal communications among the controller, agents, and OEC-
Client. Each agent maintains a local in-memory key-value
Redis store. The controller sends the task instructions of
coding operations to an agent via the Redis client, and the
task instructions are buffered at the agent for subsequent pro-
cessing. Agent-to-agent communications are pull-based via
the Fetch tasks (§4.3), such that the sender agent buffers the
blocks to be sent in its local Redis store, and the receiver
fetches the buffer via the Redis client. Each OECClient also
communicates with its associated agent via Redis.
Integration: We integrate OpenEC into HDFS-RAID and
HDFS-3 as follows. We realize a new block placement policy
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Figure 6: Block layouts for the (6,4) RS code. Suppose that each
block stores four packets. We partition file data into 16 packets,
ordered as p0, p1, · · ·, and p15. We place the packets across k = 4
blocks. Packets at the same offset (e.g., in dashed boxes) are encoded
together. In sub-packetization, each packet is further divided into
sub-packets for encoding.

called BlockPlacementPolicyOEC, which redirects block
placement requests to the controller to manage erasure-coded
block placement. We also modify the FSNamesystem class
in HDFS-RAID and the BlockManager class in HDFS-3 to
redirect any lost block information to the controller so that
OpenEC manages repair operations. Note that our integra-
tions into HDFS-RAID and HDFS-3 only require limited
modifications to their codebases, with around 300 LoC and
450 LoC, respectively2.

5 Evaluation
We conduct testbed experiments on OpenEC. We summarize
our major findings on OpenEC: (i) it preserves the perfor-
mance of HDFS-RAID and HDFS-3 in erasure coding deploy-
ment (§5.2); (ii) it supports various state-of-the-art erasure
coding solutions and preserves their properties, especially in
network-bound environments (§5.3); (iii) it can automatically
optimize the repair performance for a hierarchical topology
(§5.4); and (iv) it achieves scalable performance in real cloud
environments (§5.5).

5.1 Setup
Testbeds: We evaluate OpenEC on both a local cluster (§5.2-
§5.4) and Amazon EC2 (§5.5). Our local cluster testbed com-
prises 16 machines, each of which has a quad-core 3.4 GHz In-
tel Core i5-3570, 16 GiB RAM, and a Seagate ST1000DM003
7200 RPM 1 TiB SATA hard disk. All machines are intercon-
nected via a 10 Gb/s Ethernet switch. On the other hand,
our Amazon EC2 testbed comprises 30 instances of type
m5.xlarge, connected via a 10 Gb/s network, in the US
East (North Virginia) region. Each instance has four vCPUs
with Intel AVX-512 instruction sets and 16 GiB RAM. Both
testbeds support optimized coding operations based on ISA-L.
Default setup: We set the HDFS block size as 64 MiB and
the packet size for erasure coding as 128 KiB. We set HDFS-3

2We compare the amounts of code changes in OpenEC with those in our
previously built prototypes CORE [26] and DoubleR [19], both of which
modify HDFS-RAID to realize new erasure codes. Excluding the implemen-
tation of erasure codes (e.g., coding operations), CORE and DoubleR make
around 2,300 LoC and 4,100 LoC of changes to the HDFS-RAID codebase
for the integration of erasure codes, respectively.
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Figure 7: Performance of basic operations in online and offline encoding.

as the default DSS for OpenEC, except when we compare
OpenEC with HDFS-RAID. Regarding the automated opti-
mization features (§4.4), our experiments enable automated
BindX and BindY, except when we evaluate the original per-
formance of erasure codes without OpenEC optimization in
§5.3 and when we evaluate BindX and BindY in §5.4. We
also disable hierarchy-aware repairs until we evaluate this
feature in §5.4. We assign a dedicated machine to serve both
the OpenEC controller and the HDFS NameNode, while
each remaining machine serves an OECClient, an OpenEC
agent, an HDFS client, and an HDFS DataNode. We plot the
average results over 10 runs, including the error bars showing
the maximum and minimum of the 10 runs.

5.2 Performance of Basic Operations
We compare OpenEC with HDFS-RAID and HDFS-3 in
terms of basic operations using our local cluster. As OpenEC
adds another software layer between upper-layer applications
and the underlying DSS, it may incur extra overhead. We
show that such overhead (if any) is limited; in some cases,
OpenEC even significantly improves performance. We also
compare OpenEC with native coding performance and eval-
uate its performance for different block and packet sizes.

Single-client performance in online encoding: We first
compare the single-client performance between HDFS-3 and
OpenEC, both of which are configured with online encoding
to generate erasure-coded data. Here, we use the (9,6) RS
code (as in QFS [31]). We first write a file of size 384 MiB
(i.e., six times the block size), and issue a normal read to the
file without failures. We also issue a degraded read to the file
with one data block deleted. Figure 7(a) shows the through-
put results of writes, normal reads, and degraded reads. Both
OpenEC and HDFS-3 have similar performance: OpenEC’s
throughput is slightly less than HDFS-3’s by 2.36% in writes,
and is slightly higher than HDFS-3’s by 2.83% and 4.41% in
normal reads and degraded reads, respectively.

Multi-client performance in online encoding: We compare
the multi-client performance between HDFS-3 and OpenEC.
We run a total of five clients, each of which writes a file of
size 384 MiB under the (9,6) RS code. Figure 7(b) shows
the aggregate throughput of all five clients in writes, normal
reads, and degraded reads. OpenEC has lower aggregate

throughput than HDFS-3 in writes by 1.95%, but higher ag-
gregate throughput in normal reads and degraded reads by
12.9% and 8.97%, respectively. Nevertheless, considering the
error bars in the figure, we do not see significant performance
differences between OpenEC and HDFS-3.

Offline encoding: We compare the performance between
HDFS-RAID and OpenEC in offline encoding. We now
deploy OpenEC on HDFS-RAID for fair comparisons. We
write 180 blocks, and use offline encoding to generate erasure-
coded blocks using the (9,6) RS code (i.e., a total of 30 cod-
ing groups). We then delete the blocks of one storage node
and trigger full-node recovery. Here, we measure the offline
encoding throughput (i.e., the amount of input data being
encoded per unit time) and the full-node recovery through-
put (i.e., the amount of lost data being recovered per unit
time). Note that HDFS-RAID performs offline encoding and
full-node recovery via MapReduce. To exclude the MapRe-
duce startup overhead in our evaluation, we start an empty
MapReduce job to measure its latency, and subtract this la-
tency (which is around 20 s) in our evaluation of HDFS-RAID.
Note that OpenEC does not use MapReduce in offline encod-
ing and full-node recovery.

Figure 7(c) shows the results. Interestingly, OpenEC in-
creases the offline encoding throughput of HDFS-RAID by
137%. We study the HDFS-RAID source code and find that
the performance difference is mainly due to the extra step
of HDFS-RAID in reading and re-writing all parity blocks
into a single HDFS file after parity regeneration. For full-
node recovery, OpenEC has slightly higher throughput than
HDFS-RAID by 7.9%, yet the two systems have limited dif-
ferences considering the error bars.

Online vs. offline encoding: We further compare online and
offline encoding in OpenEC versus the file size, and study the
performance difference between the striped layout (in online
encoding) and the contiguous layout (in offline encoding). We
deploy OpenEC atop HDFS-3, and show that it allows both
online and offline encoding atop HDFS-3 (which currently
supports online encoding only).

We consider the single-client performance, in which a
client uses the (12,8) RS code and writes a file of size ranging
from 1 MiB to 64 MiB (assuming that the file size is divisi-
ble by eight). For online encoding, OpenEC stripes the file
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Figure 8: Comparisons with native coding operations.

in packets across eight blocks and seals the blocks after the
file write is completed (note that each block is less than the
default block size 64 MiB); for offline encoding, OpenEC
stores the file in a block and later encodes it with seven other
blocks (§4.2). We compare their performance in a normal
read (without failures) and a degraded read (with one data
block deleted) to the file; in offline encoding, we delete the
data block that stores the file in our degraded read evaluation.

Figure 7(d) shows the results. The throughput increases
with the file size, since the data transfer performance becomes
more dominant as the blocks become larger. We also see
the performance differences in online and offline encoding.
In online encoding, both normal reads and degraded reads
show similar performance, in which the client issues reads
to eight blocks in parallel. In offline encoding, its normal
read throughput is much higher than that in online encoding
(by 44-718%), as any slowdown in one of the parallel reads
to online-encoded data can degrade the overall performance.
However, the degraded read throughput in offline encoding is
much less than that in online encoding especially for larger file
sizes, as it needs to retrieve eight blocks (i.e., seven additional
blocks over the original file) to recover the file. To validate
our results, we conduct similar experiments using the original
erasure coding implementations in HDFS-3 and HDFS-RAID
(which realize online and offline encoding, respectively) and
they show similar performance differences as in OpenEC
(we omit the results here in the interest of space).

Comparisons with native coding operations: We compare
the computational performance of the ECDAG-based coding
operations with that of the native coding operations using ISA-
L in HDFS-3. Figure 8(a) shows the encoding throughput
for k 64-MiB blocks under (n,k) RS codes. ECDAG-based
encoding has 29-38% lower throughput than native encod-
ing, mainly because there is additional overhead for creating
multiple compute tasks for computing the n− k parity blocks.
Figure 8(b) shows the decoding throughput for decoding one
block, in which ECDAG-based decoding has only slightly less
throughput (by 0.6-3.2%) than native decoding, as there is
only one compute task for decoding a single block. Neverthe-
less, compared to the overall read/write operations (Figure 7),
the computations of ECDAG-based coding are much faster
and incur limited overhead.
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Figure 9: Impact of block and packet sizes.

Impact of block and packet sizes: We study how the perfor-
mance of OpenEC varies with block and packet sizes. We
focus on the single-client throughput of online encoding and
degraded reads under the (9,6) RS codes as in §5.2. Fig-
ure 9(a) shows the throughput versus the block size, where
the packet size is fixed as 128 KiB. The throughput of both op-
erations increases with the block size as the disk and network
bandwidths are better utilized, and stabilizes when the block
size is at least 64 MiB. Figure 9(b) shows the throughput ver-
sus the packet size, where the block size is fixed as 64 MiB.
The performance degrades if the packet size is too small since
there are many function calls for retrieving individual packets,
or if the packet size is too large since there is less parallelism.
To achieve high performance, our default setup chooses the
block size as 64 MiB and the packet size as 128 KiB.

5.3 Support of Erasure Coding Designs
We realize several state-of-the-art repair-friendly erasure cod-
ing solutions based on the ECDAG abstraction. Recall from
§2.1 that existing repair-friendly codes are designed to min-
imize the repair bandwidth or I/O in single-failure repairs.
Thus, we focus on evaluating their performance of repairing
one lost block in a coding group under OpenEC. We config-
ure two bandwidth settings in our local cluster: 1 Gb/s and
10 Gb/s. For the 1 Gb/s case, network transfer becomes the
bottleneck (compared to coding computations and disk I/O),
and we expect that the empirical performance conforms to
the theoretical gains.

We use the conventional repair approach of RS codes as
our baseline, in which it retrieves k blocks from k non-failed
DataNodes to decode the lost block in a fetch-and-compute
manner (§2.2). We compare the conventional repair approach
with the following solutions:

• LRC (Figure 10(a)): We compare RS codes with Azure’s
LRC [21]. For RS codes, we set (n,k) = (9,6); for LRC,
we set (n,k) = (10,6), in which there are two local parity
blocks, each of which is encoded from a local group of
three data blocks, and two global parity blocks that are
encoded from all six data blocks.

• MSR codes (Figure 10(b)): We compare RS codes with
MSR codes [14], which leverage sub-packetization to min-
imize the repair bandwidth. We focus on two variants of
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Figure 10: Support of erasure coding designs.

LRC (10,6)
vs. RS (9,6)

Butterfly (6,4)
vs. RS (6,4)

MISER (8,4)
vs. RS (6,4)

PPR (9,6)
vs. RS (9,6)

Pipeline (9,6)
vs. RS (9,6)

DRC (6,4)
vs. RS (6,4)

DRC (9,6)
vs. RS (9,6)

Gain 2× 1.6× 2.28× 2× 6× 1.5× 2×

Table 2: Theoretical gains of state-of-the-art erasure codes or repair algorithms over the conventional repair of RS codes.

MSR codes: MISER codes [45] (which require n ≥ 2k)
and Butterfly codes [32] (which require n = k+ 2). We
consider the (6,4) RS code, the (6,4) Butterfly code, and
the (8,4) MISER code.

• Repair algorithms (Figure 10(c)): We study how the
repair algorithms, namely PPR [29] and repair pipelin-
ing [25], improve the repair performance of RS codes by
parallelizing partial repair operations. We compare them
with the conventional repair under the (9,6) RS code.
• Double Regenerating Codes (DRC) (Figure 10(d)): We

compare RS codes with DRC [19] in a hierarchical net-
work setting. We divide our local cluster into three logical
racks. We use the Linux tc command to limit the band-
width between any two storage nodes at different logical
racks as 1 Gb/s [44], while the bandwidth between any two
storage nodes within the same logical rack remains 10 Gb/s.
We compare RS codes and DRC under (n,k) = (6,4) and
(n,k) = (9,6). In both cases, we distribute the erasure-
coded blocks of each coding group evenly across different
nodes in three racks (with n/3 erasure-coded blocks each).

Figure 10 shows the results; for our comparisons, Table 2
also shows the theoretical throughput gains of the erasure
coding solutions over the conventional repair approach for
RS codes. For the 1 Gb/s network, we observe that the em-
pirical throughput gains of the erasure coding solutions are
consistent (with only slight degradations) with the theoretical
throughput gains. For the 10 Gb/s network, the empirical
gains decrease since the coding computation and disk I/O
overheads become more significant. For example, MISER
codes have less throughput than Butterfly codes in the 10 Gb/s
network; the throughput gain of MISER codes drops to 1.25×,
while that of Butterfly codes drops to 1.35× (Figure 10(b)).
The reason is that both MSR codes retrieve data from n−1
non-failed storage nodes for repairs, and MISER codes con-
nect to more storage nodes than Butterfly codes (seven versus
five) and incur higher disk I/O overhead. Overall, OpenEC
preserves the properties of the erasure coding solutions.

5.4 Improvements with Automated Optimizations
We now evaluate how OpenEC achieves performance gains
via automated optimizations (§4.4) for a hierarchical topology.
We again configure a three-rack logical topology in our local
cluster as in our DRC experiments in §5.3.

We first compare the offline encoding performance for
three configurations: (i) automated optimization is disabled,
(ii) only automated BindX is enabled, and (iii) both auto-
mated BindX and BindY are enabled (our default setting).
We consider the (8,6), (10,8), and (12,10) RS codes. We
measure the throughput of offline encoding by writing 30
coding groups of blocks into HDFS-3 via OpenEC, which
evenly distributes the blocks across three racks. Figure 11(a)
shows that enabling only BindX increases the throughput by
37-42%, while enabling both BindX and BindY increases the
throughput by 38-44%.

We also evaluate how OpenEC automatically improves
the repair performance via the construction of a pipelined
ECDAG. We delete all blocks of one storage node and trigger
full-node recovery on the same node. Figure 11(b) shows
that the repair optimization increases the repair throughput of
OpenEC by 82-128%.

5.5 Performance in Amazon EC2
We finally evaluate OpenEC in Amazon EC2. We configure
three settings with N instances, where N = 10, 20, and 30 (see
§5.1 for the instance type). One instance hosts the OpenEC
controller and the HDFS NameNode, and each of the remain-
ing N−1 instances hosts an OECClient, an OpenEC agent,
an HDFS client, and an HDFS DataNode. We consider the
(9,6) RS code, and all N−1 clients issue different basic oper-
ations as in §5.2. Figure 12 shows the results when OpenEC
realizes online and offline encoding atop HDFS-3. We ob-
serve consistent throughput patterns as in our local cluster
experiments in §5.2 (e.g., both normal reads and degraded
reads have similar throughput). Also, the performance of
OpenEC scales well with the number of instances.
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6 Related work
New erasure coding solutions: RS codes [43] are widely
deployed today (e.g., [5, 7, 15, 31, 54, 55]), mainly for two
reasons. First, RS codes are maximum distance separable
(MDS), meaning that under the coding parameters (n,k), the
fault tolerance against n− k block failures is achieved with
the minimum storage redundancy (i.e., n/k times the original
data). Second, RS codes support general coding parameters
n and k (provided that k < n). However, RS codes have high
repair costs, and hence many new erasure coding solutions
have been proposed to reduce the repair bandwidth or I/O.

One direction of research is to design new erasure codes.
Minimum-storage regenerating (MSR) codes [14] minimize
the repair bandwidth and preserve the MDS property. Follow-
up studies design new MSR codes [18, 32, 39, 42, 45, 50, 52],
some of which are evaluated in open-source DSSs (e.g., PM-
RBT codes [39] are evaluated in HDFS, while Butterfly [32]
and Clay [52] codes are evaluated in Ceph). Aside MSR
codes, some MDS codes incur slightly more repair bandwidth
than the minimum point but can be easily constructed with
any (n,k) (e.g., [24,41]), while some non-MDS erasure codes
trade more storage redundancy than MDS codes for less repair
I/O (e.g., [21–23, 33, 44, 49]). DRC [19] minimizes the cross-
rack repair bandwidth in hierarchical topologies.

Another direction of research is to design efficient repair
algorithms that apply to general erasure codes. Lazy re-
pair [11, 47] reduces repair executions by deferring a repair
until a threshold number of failures occurs. PPR [29] and
repair pipelining [25] parallelize a single-failure repair across
storage nodes. Proactive degraded reads [20] mitigate tail

latencies via the load balancing of read requests.
Unlike the above studies, OpenEC targets a different per-

spective and focuses on unified and configurable erasure cod-
ing management. It supports different new erasure codes and
repair algorithms in a unified framework.
Erasure coding programming: Several open-source li-
braries are available for erasure coding programming. Zfec
[10] implements RS codes and is used by Tahoe-LAFS [55].
Jerasure [36] is a C library that supports various erasure
codes. It is later extended with GF-Complete [34] to en-
able fast Galois Field arithmetic. ISA-L [6] is another C
library that supports various erasure codes, and it optimizes
Galois Field arithmetic for Intel hardware. Both Jerasure and
ISA-L libraries are widely used in production (e.g., Ceph and
Hadoop 3.0). PyEClib [9] is a Python library used by Open-
Stack Swift. It builds on liberasurecode [2], which unifies
different erasure coding libraries including both Jerasure and
ISA-L. OpenEC emphasizes the deployment of erasure codes
in DSSs, and it can leverage the above libraries to implement
erasure codes via the ECDAG abstraction.
Configurable storage: There is an increasing demand of
providing flexibility for storage system management and con-
figuring different storage policies based on application re-
quirements. Existing approaches rely on either client-side
customization [12, 13, 28, 37] or the coordination by a cen-
tralized controller under the software-defined storage (SDS)
framework [16, 48, 51]. OpenEC borrows the same principle
from SDS, but specifically focuses on configurable erasure
coding management in distributed environments.

7 Conclusions and Future Work
This paper presents OpenEC, a new framework that pro-
vides unified and configurable erasure coding management
for distributed storage. It leverages the ECDAG abstraction to
define erasure codes and configure the workflows of coding
operations. Our OpenEC prototype achieves effective per-
formance atop HDFS in both local cluster and Amazon EC2
environments, while supporting a variety of state-of-the-art
erasure codes and repair algorithms. Our work sheds light on
how to facilitate erasure coding designers to deploy erasure
coding solutions in a simple and flexible manner.

This paper currently focuses on HDFS, which organizes
data in fixed-size blocks. Our technical report [27] also de-
scribes how we integrate OpenEC into QFS [31]. In future
work, we study how OpenEC can be deployed in other DSSs,
especially object-storage-based DSSs (e.g., Ceph and Swift)
that organize data in variable-size objects.
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and the anonymous reviewers for their comments. This work
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