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Manning, 2003), Petrov & Klein (2007) show
that unlexicalized parsers can match lexicalized
parsers in performance using the grammar rule
splitting technique. Given the practical advan-
tages and the latest development, unlexicalized
parsing deserves further scrutiny.

A profitable direction of research on unlexi-
calized parsing is to investigate novel parsing
features. This paper examines a set of what we
call tree topological (TT) features, including
phrase span, phrase height, tree skewness, etc.
This study is motivated by the fact that conven-
tional parsers rarely consider the shape of
subtrees dominated by these nodes and rely
primarily on matching tags. As a result, an NP
with a complicated structure is treated the same
as an NP that dominates only one word. How-
ever, our study shows that TT features are use-
ful predictors of phrase boundaries, a critical
ambiguity resolution issue. TT features have
two more advantages. First, TT features capture
linguistic properties, such as branching and
grammatical “heaviness”, across different syn-
tactic structures. Second, they are easily com-

Many state-of-the-art parsers work with lexicalPutable without the need for extra language re-
ized parsing models that utilize the informatiorfOUrces.

and statistics of word tokens (Magerman, 1995; The organization of the paper is as follows.
Collins, 1999, 2003; Charniak, 2000). The perSection 2 reviews the features commonly used
formance of lexicalized models is susceptible tt parsing. Section 3 provides the details of TT
vocabulary variation as lexical statistics is oftefeatures in the unlexicalized parser. The parser
Corpus-speciﬁc (Ratnaparkhi’ 1999; Gi|deai,S evaluated in Section 4. In Section 5, we
2001). As parsers are typically evaluated usingiscuss the effectiveness and advantages of TT
the Penn Treebank (Marcesal, 1993), which features in parsing and possible enhancement.
is based on financial news, the prob]ems O-EhiS is followed by a conclusion in Section 6.
lexicalized parsing could easily be overlooked,

Unlexicalized models, on the other hand, aré Related Work

less sensitive to Iexicgl variation and are morg 1 Parsing Features

portable across domains. Though the perform-

ance of unlexicalized models was believed ndthis section reviews major types of information
to exceed that of lexicalized models (Klein &n parsing.

Abstract

As unlexicalized parsing lacks word to-
ken information, it is important to inves-
tigate novel parsing features to improve
the accuracy. This paper studies a set of
tree topological (TT) features. They
guantitatively describe the tree shape
dominated by each non-terminal node.
The features are useful in capturing lin-
guistic notions such as grammatical
weight and syntactic branching, which
are factors important to syntactic proc-
essing but overlooked in the parsing lit-
erature. By using an ensemble classifier-
based model, TT features can signifi-
cantly improve the parsing accuracy of
our unlexicalized parser. Further, the
ease of estimating TT feature values
makes them easy to be incorporated into
virtually any mainstream parsers.

1 Introduction



Tags The dominant types of information that2.2 Linguistic-motivated Features

drive parsing and chunking algorithms ar?%this section, a review of the linguistic motiva-

POS/syntactic tags, context-free grammar (CF¢; n behind the TT features is provided.

rules, and their statistical properties. Matching
tags against CFG rules to form phrases is centf@rammatical Weight Apart from syntactic

to all basic parsing algorithms such as Cockeategories, linguists have long observed that the
Kasami-Younger (CKY) algorithm, and the Earnumber of words (often referred to as “weight”
ley algorithm, and the chart parsing. or “heaviness”) in a phrase can affect syntactic

) : . _processing of sentences (Quekal, 1985; Wa-
Word Token-basedVachine learning and sta sow, 1997; Rosenbach, 2005). It corresponds

tistical quellmg emerged in the 905. asan |qle? ughly to the span feature described in Section
compyf[atlonal app_roach to _fea_ture-rlch ParsiNg >~ The effect of grammatical weight often
Cfla?smers can tyglcally capltaliize on alarge s anifests in word order variation. Heavy NP
of features in decision making. Magerma%h. . . . :

) ift, dative alternation, particle movement and
(1995), Ratnaparkh (1999) and Charniak (200 xtraposition in English are canonical examples

used classifiers to model dependencies betwe ere “heavy” chunks get dislocated to the end

kons & atrbutes 1 excazed parsing. Colind] 2 Senience. In his corpus analysis, Wasow
(1999, 2003) also integrated information Iike?lgw) found that weight is a very crucial factor

head word and distance from head into the sti determining dative alternation. ~Hawkins
S o 994) also argued that due to processing con-
tistical model to enhance probabilistic char

parsing. Since then, word tokens, head wor traints, the human syntactic processor tends to

and their statistical derivatives have becomg _ P &1 Incoming stream of words as rapidly
; s possible, preferring smaller chunks on the left.
standard features in many parsers. Word token
information is also fundamental to dependencyree Topology CFG-based parsing approach
parsing (Kibleret al, 2009) because depend-ides the structural properties of the dominated
ency grammar is rooted in the idea that the headbtree from the associated syntactic tag. Struc-
and the dependent word are related by differetural topology, or tree shape, however, can be
dependency relations. useful in guiding the parser to group tags into

. hrases. Structures significantly deviating from
Semantic-basedSome efforts have also beer|Deft/right branching, e.g. center embedding, are

rsnea;]dsee JE[Z gor;ﬁ'dzrsffmawfr dfsez[ruerefisr’ststj;h Yuch more difficult to process and rare in pro-
with sem%r;tic (?Iasseg. often usin Wordlgl%- ction (Gibson, 1998). Another example is the

C 9 tresolution of scope ambiguity in coordinate
based resources. The lexical semantic class c§

be instructive to the selection of the correc fuctures €S5). € are common but notori-

arse from a set of candidate structures. It h ysly difficult to parse due to scope ambiguity
P . ’ en the conjuncts are complex (Collins, 1999;
been reported that the lexical semantics

words is effective in resolving structural ambi- ubleret al, 2009). One good cue to the prob-

. . lem is that humans pref&Ss with parallel in-
guity, especially PP-attachment (Blaek al, : .
1992 Stetina & Nagao, 1997 Agirret al, ternal syntactic structures (Frazitral, 2000).

In a corpus-based study, Dubey al. (2008)

2008). Nevertheless, the use of semantic fegﬁow that structural repetition across conjuncts

:)Li/rsrz'shg;dsssml :ceel:]iri;elats“(la?#;r:ﬁ;e.Ia-;hﬁ); |20;Jirs_ significantly more frequent. The implication
q 9 guag ?o(i)arsing is that preference should be given to

sources, such as sense-tagged corpora ) cketing in which conjuncts are structurally

. or
WordNet_ databases. Semantlc-pased ParSdmilar. TT information can inform the parser of
also requires accurate sense-tagging.

Since substantial gain from tag features itshe structural properties of phrases.

qnlikely in the near future and deriving seman3  An Ensemble-based Parser

tic features is often a tremendous task, there is a

pressing need to seek for new features, particio accommodate a large set of features, we opt
larly in unlexicalized parsing. for classifier-based parsing because classifiers



can easily handle many features, as pointed outBoth the chunker and the recognizer are
in Ratnaparkhi (1999). This is different fromtrained using the Penn Treebank (Maretial,
chart parsing models popular in many parsef993). In addition, we adopt the ensemble tech-
(e.g. Collins, 2003) which require special statisasique to combine two sets of heterogeneous fea-
tical modelling. Our parser starts from a stringqures. The method yields a much more accurate
of POS tags without any hints from words. Agredictive power (Dietterich, 2000). One neces-
in other similar approaches (Abney 1991; Ransary and sufficient condition for an ensemble of
shaw & Marcus, 1995; Sang, 2001; Sagae &lassifiers to be more accurate than any of its
Lavie, 2005), the first and the foremost problenndividual members is that the classifiers must
that has to be resolved is to identify the boundse diverse. Table 1 summaries the basic ration-
ary points of phrases, without any expliciale of the parser. The two feature sets will be
grammar rules. Here we adopt the ensembfarther explained in Section 3.2 and 3.3.

learning technique to unveil boundary points, of —
chunking pointshereafter. Two heterogeneous' Prepare training data from the Treebank based

. : on topological & information-theoretic features
and mutually independent attribute feature sets — . he chunk d oh . :
introduced in Section 3.2 and 3.3 Train the chunker and phrase recognizer using
are in ) o the ensemble technique

3.1 Basic Architecture of the Parser " For any input tag sequente
WHILE | contains more than one element DO

Our parser has two modules, namely, a chunker IDENTIFY the status# or % of each focus

and a phrase recognizer. The chunker locates point inl

the boundaries of chunks while the phrase rec- RECOGNIZE the syntactic tag (ST) of each
ognizer predicts the non-terminal syntactic tag identified chunk

of the identified chunks, e.§P, VP, etc. In the EI\LlJllj:)VI:\)/ﬁlTLEEl with the new ST sequence

chunker, we explore a new approach that aims _
at identifying chunk boundaries. Assume tha{_DiSPlay the parse tree_

the input of the chunker is a tag sequencg. < Table 1. Basic rationale of the parser
Xn ..« Xn> Where < n<m. Lety, be the point of  The learning module acquires the knowledge
focus between two consecutive tagsandx..;. encoded in the Penn Treebank to support vari-
The chunker classifies all focus points as eith@us classification tasks. The input tag sequence
a chunking point or a merging point at the relégs first fed into the chunker. The phrase recog-
vant level. A focus poiny, is a merging point if nizer then analyzes the chunker’'s output and
X andx,+; are siblings of the same parent nodassigns non-terminal syntactic tags (&8, VP,

in the target parse tree. Otherwiggis a chunk- etc.) to identified chunks. The updated tag se-
ing point. Consider the tag sequence and tligience is fed back to the chunker for processing
expected classification of points in the examplat the next level. The iteration continues until a
below. Chunking points are marked withg“ complete parse is formed.

and merging points with+".

PRP % VBZ % DT %RB + JJ %NN
He is a very nice guy

3.2 Tree Topological Feature Set

Tree topological (TT) features describe the
shape of subtrees quantitatively. Our approach
The point betweerRB and JJ is a merging to addressing this problem involves examining a
point because they are siblings of the pareggt of topological features, without any assump-
node ADJP in the target parse tree. The pointion of the word tokens. They all have been im-
betweenDT andRB is a chunking point since plemented for chunking.

DT andRB are not siblings and do not share th ode Coordinates (NCs): NG@sclude the level

same pa_rent node. Chunks are def_ined as thesocus (F) and the relative positiorRQ) of
consecutive tag sequences not split Up%y e target subtree. The level of focus is defined
When a focus poiny, is classified as a chunk- 55 the total number of levels under the target
ing point, it effectively means that no fragmenhqge  with the terminal level inclusive while the
precedingy, can combine with any fragmentgp jngicates the linear position of the target
following y, to form a phrase, i.e.distituent node in that level. As in Figure 1, thé for



subtreeA andB are the same; however, tR® trees. For illustration, let us consider subtBee
for subtreeA is smaller than that for subtr8e  with the target nod®P at level of focusl(F) =

Span Ratio (SR)The SRis defined as the total 4 N Figure 1. Since there are five terminal
number of terminal nodes spanned under tff¥Pdes, the pivot is at the third nod®. The
target node and is divided by the length of thi€ndths of the paths from left to right in the
sentence. In Figure 1, the span ratio for the tayuPtree are 1, 2, 3, 4, 4 and the moment factors
get nodeVP at subtreeB is 5/12. This ratio il- A for the paths are 2, 1, 0, -1, -2. Assuming that
lustrates not only how many terminal nodes ar& @nd O for all the trees in the Treebank at

covered by the target node, but also how far tHgvel 4 are, say, 2.9 and 1.2 respectively, then
target node is from the ro8t SM = -3.55. It implies that subtre® under the

) ~ target node/P has a strong right branching ten-
Aspect Ratio (ARJThe AR of a target node in @ gency, even though it has a very uniform

subtree is defined as the ratio of the total nuntyanching factor which is usually defined as the
ber of non-terminal nodes involved to the totah,mber of children at each node.

number of terminal nodes spanned. iR is s Level 5
also indicative of the average branching factor

of the subtree. T Sibteen T Subtree 8 Level4
Skewness Measure (SM)he SM estimates the

degree to which the subtree leans towards eithef T [T vl s
left or right. In this research, tI&M of a subtree

is evaluated by the distribution of the length of ST Ty e
the paths connecting the target node and eac

terminal node it dominates. The length of a pathy--{------- oo A,,,Lév,e[l,
from a target nod¥ to a terminal nodé& is the NP
number of edges betwedhandT. FOr a tree --f---f-rmmm @y oo e e oo b N

Level O
with n terminalnodes, there ane paths. A pivot

(ferming| Level)

is defined as then[2]th terminal node whenis NN IN NNP CC'NNP POS NN VB TO VB ) NNS
odd and betweemf2]th and [f+1)/2]th termi- Figure 1. Two different subtrees in the senteice
nal nodes ifn is even, where [ ] is a ceiling In our parser, to determine whether the two
function. TheSMis defined as target nodes at level 4, i.NP and VP, should
ZHZP(K Xy be merged to form & at level 5 or not, an at-
sm=_t | &" Ean (1) tribute vector with TT features for botP and
2P o’ VP are devised as a training case. The corre-

£>0

sponding target attribute is a binary value, i.e.,
wherex;is the length of theth path pointing to chunking vs. merging. In addition, a setibf
the i-th terminal nodeX and o are the average mergedattributes are introduced. For example,
and standard deviation of the length of all paththe attributeSM-if-mergedndicates the changes
at that level of focusLf). g is the distance of the SMif both target nodes are merged. This
measured from thé-th terminal node to the is particularly helpful since they are predictive
pivot. The distance is positive if the terminalunder our bottom-up derivation strategy.

node is to the left of the pivot, zero if it is hig

at the pivot, and negative if the terminal node ig-3
to the right of the pivot. Obviously, if the Context features are usually helpful in many
lengths of all paths are the same in the tree, th@plications of supervised language learning. In
numerator of Eqn (1) will be crossed out and theodelling context, one of the most central
SMreturns to zero. The pivot also provides amethodological concepts is co-occurrence.
axis of vertical flipping where th8Mstill holds. While collocation is the probabilistic co-
The farther the terminal node from the pivot, theccurrence of pure word tokensplligation is
longer the distance. The distangeprovide the defined as the co-occurrence of word tokens
moment factors to quantify the skewness okith grammatical patterning such as POS cate-

Information-Theoretic Feature Set



gories (Hunston, 2001). In this research, to cagics and their errors can compensate each other.
ture the colligation without word tokens, a slid-Two questions need to be addressed when
ing window of 6 POS tags at the neighborhootuilding and using an ensemble that integrates
of the focus poiny, is defined as our first set of the predictions of several classifieFst, what
context attributes. In addition, we define a set afata are used to train the classifiers so that the
information-theoretic (IT) attributes which re-errors made by one classifier could be remedied
flect the likelihood of the fragment collocation.by the other?Second how are the individual
Various adjacent POS fragments around thdassifiers fused or integrated to produce a final
focus pointy, are constructed, as in Table 2.  ensemble prediction? As shown in the last two
sections, we address the first question by intro-

Xn2 | Xn | Xn | Xnet | Xne2 | Xne Colligation meas. . .
2 | Yo | il I R 9 ducing two heterogeneous and mutually inde-
Xn da:{(Xn1, Xn) pendent attribute feature sets, namely the tree
Xns1 05:2(Xn, Xns1) topological (TT) features and information-
Xors 05 (Xoss Xom) theoretic (IT) features. Instead of training ak th

features to form a single giant classifier, we

*n da:8(Xn-2Xn-1, Xn) produce two distinct, sometimes diversified,
Xn+1 05 (Xn-1Xn Xne1) training sets of data to form two separate mod-
X1 | Xne2 de:2(Xny Xrre1Xne2) erate classifiers, in the hope that they will pro-

Xz | Xoea| G (Xomgs XoegXoes) duce a highly accurate prediction. The second
Table 2. Colligation as context measure in variatjacent quesgon IS addrpfsse.d by employlng the boosting
POS fragments where the focus pajipis between, and  @lgorithm. Boosting is an effective method that
X1 produces a very accurate prediction rule by
An n-gram is treated as a 2-gram of @ combining rough and moderately inaccurate
rules of thumb (Schapire & Singer, 2000). It

?I\r/laarge?rrr:gn ?&mﬁ?rr&rg’ 1Vggg)re.?lhe+in?ér;a20n_generates the classifiers in an iterative way. At

h ic f . | | inf the early beginning, an initial base classifier
theoretic unctlc_)er, hamely, mutual informa- using a set of training data with equal weight is
tion (MI), quantifies the co-occurrence of frag

ts. Ml " babilitv of ob Tirst constructed. When the prediction of the
ments. Ml compares the probability Of ObSEV=, 556 classifier differs from the expected out-
ing n;-gram andn,-gram together to the prob-

the set of attributes. Take the pojqtbetween result, the learning of the subsequent classifier

RB andJJ in Section 3.1 as an exampl5 iy focus on learning the training data that are
represents th®ll between DT RB) andJJ, i.e. mjsclassified, or poorly predicted. This process
MI(DT/ RB, JJ). continues until a specified number of iterations
is reached or a predefined termination condition
is met. The ensemble prediction is also a
weighted voting process, where the weight of a
The basic idea of ensemble techniques involvetassifier is based on its errors over the training
considering several classification methods afata used to generate it. The first practical
multiple outputs to reach a decision. An ensenboosting algorithmAdaBoost was introduced
ble of classifiers is a set of classifiers whospy Freund & Schapire (1997), and solved many
individual decisions are combined in someractical difficulties of the earlier boosting atgo
way, typically by weighted or un-weighted vot-rithms. Table 3 illustrates the main idea of the
ing to classify new examples. Empiricallyalgorithm. Interested readers can refer to the
speaking, ensembles methods deliver highljterature for detailed discussion (Freund &
accurate classifiers by combining less accuragchapire, 1997; Hastet al, 2001).

ones. They tend to yield better results than a

single classifier in those situations when differ-

ent classifiers have different error characteris-

3.4 Multiple Classifications using Ensem-
ble Technique



Given: &, Y1),-.,Xm Ym) Wherex, O X, y; OY ={-1, +1}

Initialize D4(i) = 1/m

Fort=1, ...,T

® Train a weak learner using distributibn

® Get a weak hypothesig: X - {-1, +1} with error
& = Pripdh(x) # v

* Choose a, :1|n[1_5tJ
2 &
® Update:
D)= D), {6”‘ i 0=y,
Z, e ifh(x)#y
D, (i)expta, yh(x))
Zt
whereZ, is a normalization factor

® OQutput:

Ho = Sig Zatht(x)j

t=1

Table 3. Adaboost algorithm

4 Experimental Results

are -1.022 and 1.018 respectively. We
performedt-tests for difference in means be-
tween various levels, even under the same
phrase type. For example, thescore for the
difference in mean betweér2- VP andL3- VP

is 284.085, which indicates a strong difference
in SMvalues between the two levels.

The means of all phrases beyond level 2 are
negative, consistent with the fact that English is
generally a right branching language. When we
compare th&M values across phrase types, it is
easy to notice tha¥VPs and PPs have larger
negative values, meaning that the skewness to
the right is more prominent. Even within the
same phrase type, ti&M values may differ sig-
nificantly as one moves from its current level to
parent level. TheSM offers an indicator that
differentiates different phrase types with differ-
ent syntactic levels. Chunkers can use this addi-
tional parameter to do chunking better.

Our parsing models were trained and tested

Table 4 presents some sampled statistics of tnging the Penn Treebank (Marcetsal, 1993)

skewness measur&N) of some major phrase
types, which includé&/P, NP, S, andPP, based
on Sections 2—21 of the Penn Treebank (Ma

cuset al, 1993).

VP L2-VP L[3-VP L4-VP L5-VP
N 18406 22,052 18,035 15911
Mean  -1.022 -4.454 -4.004 -3.738
S.D. 1.018 1406  1.438  1.405
toe  284.085* -31.483* -17.216*

NP L2-NP L3-NP L4-NP L5-NP
N 23270 28,172 10,827 8,375
Mean  1.013 -1.313 -1.432 -2.171
S.D. 1.284 2013 1821 1.628
toeoe  158.748*  5.609*  29.614*

S [2-S L3-S L4-S  L5-S
N 2233 5020 7,049 7,572
Mean  0.688 -1.825 -1.459 -1517
S.D. 1.229 2732 2451 2.128
feoe  54.031* -7.568* 1523

PP L2-PP L3-PP L4-PP L5-PP
N 53589 11,329 11,537 5,057
Mean -1.337 -3.322 -3.951 -3.301
S.D. 0935 1.148  1.112 1.183
teoe  172.352* 42.073* -33173*

Table 4.SM values for various phrases (* = the mean in—: -
the column is statistically significantly differefrom the Five chunkers CH1
mean in the immediately following column, with degrof

freedom in all cases greater than 120)

For illustration purpose, the count of Level/R
subtrees, theisSM mean and standard deviatio

n

Following the convention of previous studies,
we pre-processed the trees by removig L
Elements and functional tags and collapsing
ADVP andPRT into ADVP. Sections 2—21 are
used for training and Section 23 for testing. To
evaluate the contribution of the features, five
different experiments were set up, as in Table 5.

Experiment Features involved

El POS tags only (=baseline)

E2 POS+IT

E3 POS+IT+TT fode coordinatesnly)
E4 POS+TT (with all features)

E5 All features in E3 & E4

Table 5. Parsing features in five experiments

El is the baseline experiment with tag fea-
tures only. E2 and E4 include additional IT and
TT features respectively. E3 and E5 are patrtial
and full mixture of the two feature types. In the
evaluation below, the chunker, phrase recog-
nizer and parser are the same throughout the
five sets of experiments. They only differ in
terms of features used (i.e. E1—E5). We first
study the impact of the feature sets on chunking.
CHS5 are evaluated.

Table 6 shows the training and test errors in
five different chunkers in the respective ex-
periments. All chunkers were trained using the
ensemble-based learning. If one compares CH2
and CH4, it is clear that both IT and TT features



enhance sentence chunking but the gain fro@ur study has provided a way to quantitatively
TT features (i.e. CH4) is much more substantiatapture linguists’ various insights that tree to-
The best chunkers (CH4 and CH5) reduce thmlogy is helpful in syntactic structure building

test error rate from the baseline 4.36% to 3.25¢%.g. grammatical weight, subtree shape, etc.).
The SMseems to capture the basic right branch-
ing property. It is noteworthy that Collins (2003)

Chunkers Training error %  Test error %

g:; igg jgg found that the parsing model that can learn the
CH3 0.69 379 branching property of structures delivers a much
CH4 0.33 3.25 better parsing performance over the one that
CH5 0.45 3.25 cannot. In our case, chunkers refer to TT fea-

Table 6. Performance of the five chunkers tures to distinguish different phrase types and

levels, and assign chunking points in such a way

Similarly, the phrase recognizer uses enserﬂéat the resulting phrases can be maximally

ble learning to capture the rule patterns. Instead . . .
. . Similar to the trees in the treebank topologically.

of reading off the rules straight from a lookup /
Apart from the overall accuracy, one may ask in

table, the learning can predict the syntactic ta%v . .
. . at way TT features improve parsing. Here we
even when it encounters rules not covered in the

treebank. Certainly, the learning allows the re({growde our prellmlnary analysis on one syntac-
. : ic construction that can be benefitted from a
ognizer to take into account features more th

just the tags. The error rates in training and tes feature-aware parser. The structure is coor-

ing are 0.09% and 0.68% respectively. Thelnate structuresSs). A practical cue is that

. conjuncts tend to be similar syntactically (and
chunker and the phrase recognizer were assem- .

, semantically). TT-feature-aware parsers can
bled to form a parser. The features described In

. roduce more symmetrical conjuncts. All rules
Table 5 were used to construct five parsers. V\Fo)e% the form “XP — XP ‘and’ XP” were ex-

use the PARSEVAL measures to compare ﬂ}(reacte d from the training data
performance as shown in Table 7. 9 '

R P = CBs 0CBs =2CBs NP L3 (-CS) L3-(+CS) L4 (-CS) L4-(+CS)
N 27,95C 222 10,222 605
P1 789 776 783 16 487 76.4
Mean 1.321 -0.397 -1.448 -1.162
P2 819 79.7 808 15 506 78.7 SD 2010 2190 1.806 2047
P3 851 828 834 14 533 80.2 t' ' 6 2.66* ' 3 560* '
P4 841 822 831 15 527 78.1 e - -
P5 847 834 840 13 546 805 \'\/IP '-32(1'(;;)3 '-3'(+C13§% '-41(%C751)1'-4'(+%§21
Table 7. Performance of five parsers corresponttirfiye ’ ’
different experiments E1—E5 Mean -4.488 -0.628 -4.063 -0.793
) S.D. 1.350 2.136 1.364 1.676
Our baseline parser (P1) actually performg,,. -25.319* -34.908*

quite well. With only tag features, it achieves amable 8. TT feature values of coordinate struct(#&S =
F-score of 78.3%. Both IT and TT features canode that immediately dominate<C& -CSotherwise; * =
separately enhance the parsing performance (9 mean in the column is statistically signifidgrdiffer-
and P4). However, the gain from TT featuregnt from the mean in the immediately following aulu).
(78.3>83.1%) is much more than that from ITWe compared thEMof CSand nonESphrases
features (78.380.8%). When the two feature usingt-tests for mean difference. Thacore is
sets are combined, they consistently produsilculated based on unequal sample sizes and
better results. The best (P5) has an F-score wfequal variances. As shown in Table 8, we
84.0%. Even though the test errors in CH4 arlgave to reject the null hypothesis that their
CHS5 are the same as shown in Table 6, P5 demeans of theSM, between phrases with and
onstrates that the cooperative effect of utilizingvithout aCS are equal att = 0.0005 signifi-

TT and IT features and leads to better parsingance level. In other words, phrases with and

results. without a CS are statistically different. GS
_ ' phrases are much more balanced with a smaller
5 Discussion SMvalue from -0.4 to -1.2GScolumns gener-

51 Tree Topology and Structures ally have a much large8M value, ranging from



-1.321 to -4.488. Th&M offers information for parsing can improve parsing. In unlexicalized
the chunkers to avoid over- or under-chunkingnodels, one can use the head POS tag alone to
conjuncts in phrases with a coordination markeapproximate similar mechanism.
(e.g. ‘and’).

6 Conclusion
5.2 Implications to Parsing

- . . - This paper has demonstrated that TT features
The findings in Section 4 indicate that the pre: 'S pap "

ted initial . f thenlexicall give rise to substantial gain in our classifier-
sented initial version of then'exica lzeqoarsgr based unlexicalized parser. The IT features have
performs on a par with the first generatieri-

: been explored as well, though the performance
cahzgd_ parsers (e.g. 'V'agefmar.‘- 1.995)' .Th‘aain is more moderate. TT features can be inex-
promising results have two implications. Fjrst ensively computed and flexibly incorporated
the integration of IT and TT features produce%‘to different types of parsers. Our parsing

substantial gain over the baseline model. T odel matches early lexicalized parsing models
features consistently outperform IT features b% performance, and has good potential to do

a ant'C_?_?bfle {narglrp]. To th? Sest of otur knt(.)WI'ven better with adjustment and optimization.
edge, 11 Teatures have not been systemaliCamy,e giatistical analysis of the treebank shows
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inexp_ensive. No extra resources or complicate njuncts. Though the present study focuses on
algorithms are needed to compute TT featureﬁnlexicalized parsing, it is likely that TT fea-

Most |mpqrtantly, they are sgltap le to the.smnfures can contribute to accuracy enhancement in
gent requirements of unlexicalized parsing

ther parsing models as well
which no word token information is allowed. P 9 '
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