
PHYS3021 Quantum Mechanics I Problem Set 6
Due: 4 December 2017 (Monday) “T+2” = 6 December 2017 (Wednesday)
All problem sets should be handed in not later than 5pm on the due date. Drop your assignments into the
PHYS3021 box outside Rm.213.
Please work out the steps of the calculations in detail. Discussions among students are highly encouraged, yet it
is expected that we do your homework independently.

6.0 Reading Assignment. (Don’t need to hand in everything for this item.)

Chapter X goes back to some formal QM. First, Hermitian operators, which carry real expectation values
〈Â〉 for any state, real eigenvalues, orthogonal eigenstates, non-negative 〈Â2〉 for any state, and many
more useful properties are introduced. Obviously, the properties are perfect for physical quantities in
QM. Thus, all physical quantities in QM are represented by Hermitian operators. This statement is a
postulate of QM. Chapter X explores the properties that are most relevant to QM, including simultaneous
eigenstates of two commuting operators. A general uncertain relation concerning two operators will
be derived. Operator method can also give us general results for general QM angular momentum
eigenvalue problems. The results cover the orbital angular momentum already discussed and also the
spin angular momentum to be covered in the next chapter. Chapter XI discussed spin angular momentum
or simply spin. It is another example of general angular momentum with s = 1/2, and thus only two
values for its component at any direction. The Stern-Gerlach experiment, nearly 100 years old, remains a
useful set up for learning and investigating QM. A matrix representation is convenient, because the size is
only 2×2. Matrices representing Ŝx, Ŝy, and Ŝz are introduced. Using their eigenvectors and eigenvalues,
the general mathematical structure of QM and the measurement theory can be illustrated. After spin, we
will go back to Chapter X to summarize the course with a few QM postulates.

Chapters in Rae’s Quantum Mechanics, Griffiths’ An introduction to quantum mechanics, McQuarrie’s
Quantum Chemistry, Engels’ Quantum Chemistry and Spectroscopy, and Bransden and Joachain’s —e,
Quantum Mechanics are good places to look up more discussion. The chemistry books are better illustra-
tions of the hydrogen atomic orbitals.

6.1 Having fun with the Pauli Matrices

We introduced the matrices for Ŝx, Ŝy and Ŝz. It turns out that they are closely related to the Pauli
matrices σx, σy, and σz, only off by a factor of h̄/2. The Pauli matrices are

σx =

(
0 1
1 0

)
(1)

σy =

(
0 −i
i 0

)
(2)

σz =

(
1 0
0 −1

)
(3)

Here, you will explore some properties of the Pauli matrices.

(a) Find the commutator [σx, σy] by playing with the matrices.

(b) Find the commutator [σx, σy] without playing with the matrices, but simply using the commutators
between the spin components (the definition of angular momentum in QM).

(c) Find σ2
x by playing with the matrices.

(d) Realizing that a general spin-half state χ can be written in the form of

χ = c1αx + c2βx

where αx (βx) is the eigenstate of Ŝx with eigenvalue +h̄/2 (−h̄/2). By operating Ŝ2
x on χ, find Ŝ2

x

and hence identify σ2
x. [Remark: Compare result with part (c).

(e) Find the product σxσy and relate the result to σz.

[Remark: You may want to explore a cyclic pattern of this result.]
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(f) While [Â, B̂] = ÂB̂ − B̂Â is the commutator, {Â, B̂} = [Â, B̂]+ ≡ ÂB̂ + B̂Â is the anti-
commutator of two operators. Find {σx, σy}.

(g) What is {σi, σi}, for i = x, y, and z? [Note: Answer in part (c) will be useful.]

6.2 Eigenvalues and Eigenvectors of Pauli Matrices

(a) Find the eigenvalues and eigenvectors of the three Pauli matrices.

(b) Find the trace of the Pauli matrices. [Hint: Very easy if you know the relation between the trace of
a matrix and its eigenvalues.]

(c) Find the determinant of the Pauli matrices.

6.3 The most general operator for a “component” of spin

After we draw some axes for the x, y, and z directions, we then have Sx, Sy, and Sz for the spin angular

momentum ~S. These directions, however, are nothing special.

Therefore, one can look at the component of spin along any direction. In 3D, a direction can be specified
by two angles θ and φ. Just think about the spherical coordinates. When θ and φ are given, a direction
is given.

(a) Now we want to construct the operator Ŝθ,φ corresponding to the component of ~S in that direction.
Following think classical and go quantum, show that the operator is given by

Ŝθ,φ =
h̄

2

(
cos θ sin θ e−iφ

sin θ eiφ − cos θ

)
(4)

(b) As a quick check, show that Eq. (4) reduces to the matrices for Ŝx, Ŝy, and Ŝz, when the corre-
sponding angles are chosen.

(c) Find the eigenvalues and normalized eigenvectors of Ŝθ,φ.

[Remark: Now you see that if you have done this part first, 6.2(a) will be trivial.]

(d) Let’s have some fun with measurements. Let βθ,φ be the eigenvector corresponding to the eigenvalue
−h̄/2. If a beam of particles prepared to be in this state is sent into a Stern-Gerlach experiment
measuring the x-component of spin, i.e., SGX, what could you say about the outcomes? Now take
the exiting beam corresponding to the measured result of +h̄/2 in SGX and then send the beam
again into a Stern-Gerlach experiment SG(θ, φ). what could you say about the outcomes?

6.4 The mean spin angular momentum 〈 ~̂S〉
Recall that an expectation value involves two ingredients: a quantity (an operator) and a state.

There is a quantity called spin, which is a vector ~̂S = Ŝxî + Ŝy ĵ + Ŝz k̂. Given a state, one can calculate

the expectation value 〈 ~̂S〉 by calculating the expectation value of each component.

(a) Warming up! Take the state to be the eigenvector βz of Ŝz corresponding to the eigenvalue −h̄/2.
Find the expectation values 〈Ŝx〉, 〈Ŝy〉, and 〈Ŝz〉. If we think about a mean spin angular momentum

〈 ~̂S〉 as 〈 ~̂S〉 = 〈Ŝx〉̂i+ 〈Ŝy〉ĵ + 〈Ŝz〉k̂, what would you say about the direction of 〈 ~̂S〉?

(b) Go back to 6.3(d). Take the state to be the eigenvector of Ŝθ,φ corresponding to the eigenvalue −h̄/2,

i.e. the state is βθ,φ in 6.3(d) again. Take this state, calculate the expectation values 〈Ŝx〉, 〈Ŝy〉,
and 〈Ŝz〉. From the results, what would you say about the direction of 〈 ~̂S〉?

6.5 Matrix formulation of QM harmonic oscillator

We discussed in class that every QM problem can be turned into a big matrix (sometimes small such as
spin) problem. This problem is to illustrate that even one can do the 1D harmonic oscillator problem by
matrices.
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Once upon a time, some clever physicists (meaning: Heisenberg, Born) found that the momentum operator
and the position operator in the 1D harmonic oscillator problem of characteristic angular frequency ω are
given by an infinite by infinite matrices of the form

x̂ =

(
1

2

h̄

mω

)1/2


0 1 0 0 · · ·
1 0

√
2 0 · · ·

0
√

2 0
√

3 · · ·
0 0

√
3 0 · · ·

· · · · · · ·

 (5)

p̂ =

(
1

2
mh̄ω

)1/2


0 −i 0 0 · · ·
i 0 −i

√
2 0 · · ·

0 i
√

2 0 −i
√

3 · · ·
0 0 i

√
3 0 · · ·

· · · · · · ·

 (6)

[Don’t worry how these matrices are obtained. For those really wanted to do, read optional set of class
notes on the operator method in harmonic oscillator.]

(a) By multiplying matrices, show that the given x̂ and p̂ give the correct commutation relation.

(b) Construct the Hamiltonian, which is now an infinite by infinite matrix, and find the eigenvalues of
a 1D harmonic oscillator.
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