
PHYS3021 Quantum Mechanics I Problem Set 5
Due: 22 November 2017 (Wednesday) “T+2” = 24 November 2017 (Friday)
All problem sets should be handed in not later than 5pm on the due date. Drop your assignments into the
PHYS3021 box outside Rm.213.
Please work out the steps of the calculations in detail. Discussions among students are highly encouraged, yet it
is expected that we do your homework independently.

5.0 Reading Assignment. (Don’t need to hand in everything for this item.) Chapter IX discusses the
most important 3D spherically symmetric problem in QM, namely the hydrogen atom. The main point
is that for each U(r), the radial equation is different and thus Rn`(r) will be different, the angular part
Y`,m`

(θ, φ) is the same for all U(r) problem. For H-atom, the radial equation can be solved by the
same Series Solution method. The results are very special due to the Coulomb U(r) ∼ − 1

r form. The
allowed energies En` depends only on n (the principal quantum number) and thus En, giving raise to
a higher degeneracy expected only of general spherically symmetric U(r). In addition, for given n, the
orbital quantum number runs from 0 to n− 1. The mathematical details are given in an appendix. The
more important point is to get a good sense of what the atomic orbitals are about mathematically and
pictorially. For example, what you learned in the past as px and py orbitals are linear combinations of
Y1,1 and Y1,−1. The shape of the s, p, d orbitals are important in understanding atoms, molecules, and
solids. For example, d orbitals are necessary for understanding magnetism in materials. Chapter IX ends
with a comparison of the QM H-atom treatment and Bohr’s model.

With the experience in solving 1D, 2D, 3D standard problems, Chapter X goes back to some formal QM.
It is about Hermitian operators, which carry real expectation values 〈Â〉 for any state, real eigenvalues,
orthogonal eigenstates, non-negative 〈Â2〉 for any state, and many more useful properties. Obviously, the
properties are perfect for physical quantities in QM. Thus, all physical quantities in QM are represented
by Hermitian operators. This statement is a postulate of QM. Chapter X explores the properties that
are most relevant to QM, including simultaneous eigenstates of two commuting operators. A general
uncertain relation concerning two operators will be derived. Operator method can also give us general
results for general QM angular momentum eigenvalue problems. The results cover the orbital
angular momentum already discussed and also the spin angular momentum to be covered in the next
chapter.

Chapters in Rae’s Quantum Mechanics, Griffiths’ An introduction to quantum mechanics, McQuarrie’s
Quantum Chemistry, and Engels’ Quantum Chemistry and Spectroscopy are good places to look up more
discussion. The chemistry books are better illustrations of the hydrogen atomic orbitals.

5.1 Hydrogen atom’s energy eigenstates

While solving the radial equation requires some math maturity, testing whether a given wavefunction is
an energy eigenstate requires only math patience on doing derivatives. Here is a simple case for you to
test your math patience.

(a) Write down the full Hamiltonian operator Ĥ for H-atom. Look up the explicit form of the full
wavefunction (radial times angular parts) ψ2pz (r, θ, φ) from class notes or books or the web. By

directly operating Ĥ on ψ2pz (r, θ, φ), show that it is really an energy eigenstate and find the
corresponding energy.

(b) Using the result in part (a), give the energy of the 2p states for He+ ion and for Li2+ ion.

5.2 Probability of finding electron in hydrogen atomic orbitals

Consider the simplest case of a hydrogen atom in the 1s state. Calculate the radius of the sphere centered
at the nucleus that encloses a probability of 50% of finding the electron.

5.3 Integrals useful for evaluating hydrogen atom properties and in statistical physics

Background: The H-atom wavefunctions are of the form Rn`(r)Y`m`
(θ, φ). The spherical harmonics

Y`m`
(θ, φ) have many nice properties that help us handle the angular integrations when calculating quan-

tities from the wavefunction (e.g. expectation value). For the radial part, R(r) is a product of the Laguerre
polynomial and an exponentially decaying function exp(−βr). In particular, the polynomial part has the
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highest term of the form rn. This leads to the following form of integrals that often appear in H-atom
calculations.

In(β) =

∫ ∞
0

rne−βr dr (1)

It happens that the same form of integrals also appear in statistical physics. In that context, the e−βr

term appears as e−βE = e−E/kT , which is the Boltzmann factor, and the integral in Eq. (1) will be over
E. Thus, it worths the effort in studying how to evaluate In.

(a) Evaluate I0(β) by doing the integral.

(b) Explore how I1 can be related to a derivative of I0. Use the relation to evaluate I1(β).

(c) Explore how I2 can be related to the second derivative of I0. Use the relation to evaluate I2(β).

(d) Generalize the results in parts (b) and (c) to obtain In(β).

[Remark: What we do here is also related to the Gamma Function, which will show up in statistical
physics calculations.]

5.4 Hermitian Operators (See SQ28)

(a) If Â is a Hermitian operator, test whether iÂ is a Hermitian operator or not.

(b) Test whether x d
dx is a Hermitian operator or not.

(c) After solving a QM Schrödinger equation problem in which a particle only lives in the range of
0 ≤ φ ≤ 2π with eigenstates given by

ψ(φ) =
1√
2π

eimφ , m = 0, ±1, ±2, . . . (2)

Show that the eigenstates are orthogonal.

[Remark: If you have done Problem Set 4, you would recognize what these eigenstates are about.]

(d) Simplest example of Schmidt orthonormalization procedure. The point is: Two degenerate
states can always be made orthogonal. Here is the procedure. Assume two normalized and degenerate
eigenstates ψ1 and ψ2 of a QM operator Â, i.e.,

Âψ1 = a1ψ1 , Âψ2 = a1ψ2 (3)

with the same eigenvalue. However, ψ1 and ψ2 may not be orthogonal. We want to construct
two orthogonal eigenstates out of ψ1 and ψ2.

(i) Show that a linear combination φ = c1ψ1 + c2ψ2 is also an eigenstate of Â with the same
eigenvalue a1.

(ii) Thus, we can find suitable combinations φ1 and φ2 such that they are orthogonal, i.e., we hope
that ∫

φ∗1φ2dτ = 0 (4)

by suitable choosing the coefficients in the combinations.
Without loss of generality, we can choose φ1 = ψ1, which is normalized. For φ2, we write

φ2 = ψ2 + cφ1 (5)

where c is to be adjusted so that the orthogonality requirement is satisfied. Find c so that
Eq. (4) is satisfied.
[Remarks: (1) You may want to extend the procedure to three degenerate states or more. (2)
A similar procedure is useful in forming the so-called hybridized states from atomic orbitals of
one atom, e.g. you must have heard of sp3 hybridization with four states pointing at different
directions (they are orthogonal) coming from linear combining one s-orbital and three p-orbitals.]
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5.5 An alternative definition of Hermitian operators

We defined the Hermitian operator as one that satisfies∫
f∗Âg dτ =

∫
(Âf)∗g dτ =

∫
gÂ∗f∗ dτ (6)

in which the definition invokes any two well-behaved functions f and g.

In some books, Hermitian operators are motivated by requiring real expectation values. Thus, an alter-
native definition invoking only one (must be any) well-behaved function f is∫

f∗Âf dτ =

∫
(Âf)∗f dτ =

∫
fÂ∗f∗ dτ , (7)

which obviously is a statement about real expectation values.

Writing ψ = c1f + c2g, where c1 and c2 are arbitrary complex constants, f and g are two well-behaved
functions, show that the definition in Eq. (7) as applied to ψ gives the definition Eq. (6).

5.6 Ehrenfest’s theorem

We gave a general equation for the time variation of expectation value d〈Â〉/dt in previous chapter and
proved it in Chapter X.

The time-dependent Schrödinger equation (TDSE) is

ĤΨ = ih̄
∂

∂t
Ψ (8)

(a) Starting with the definition of expectation value of the position

〈x〉 =

∫
Ψ∗(x, t)xΨ(x, t) dx (9)

and using TDSE and its complex conjugated form, show that

m
d〈x〉
dt

= 〈p̂x〉 (10)

[Remark: This has a close cousin in classical mechanics.]

(b) Similarly, show that
d〈p̂x〉
dt

=

〈
−dU
dx

〉
(11)

[Remark: This also has a close cousin in classical mechanics. More formally, the equation is written
as

d〈p̂x〉
dt

=

〈
−dÛ
dx

〉
(12)

where Û is a function of the position operator x̂. For the meaning of a function of an operator, see
SQ29.]

Eq. (10) and Eq. (12) have close analogy with equations in classical mechanics. They are worth
remembering as they are one of the closest gaps between QM and classical mechanics. However, pay
attention to Eq. (10) and Eq. (12) – they are talking about expectation values!
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