
PHYS3021 Quantum Mechanics I Problem Set 1
Due: 20 September 2017 (Wednesday) T+2 = 22 September 2017 (Friday)
All problem sets should be handed in not later than 5pm on the due date. Drop your assignments into the
PHYS3021 box outside Rm.213.
Please work out the steps of the calculations in detail. Discussions among students are highly encouraged, yet it
is expected that we do your homework independently.

1.0 Reading Assignment. (Don’t need to hand in everything for this item.) Chapter I served several
purposes. One is to emphasize that physics is an experimental science. The classic experiments in the first
25 years of the 20th century clearly asked for a (new) quantum theory. In Planck’s thermal radiation and
Einstein’s heat capacity theory, we stressed the implication on the discrete energies in an oscillator, which
is in contrast to classical physics. Einstein’s photoelectric theory and Compton’s scattering experiment
established the particle nature of light. Our discussion focused on Young’s double-slit experiments using
light. For dim light sources, the unusual nature of the particles (photons) becomes obvious. Photons
are detected as particles and yet the two slits must be open in order to observe the interference pattern,
even when only one photon is in the apparatus at a time. The results also inform us on what a wave
theory (Maxwell’s EM wave theory) can do and cannot do. Electrons show the same behavior in double-
slit experiments. De Broglie proposed a relation λdB = h/p to connect a particle’s momentum to a
wavelength. Thus, the idea of matter waves enters. Accepting the necessity of a wave description of
particle, a wavefunction Ψ(x, t) or Ψ(r, t) is introduced. In analogous to EM wave theory, the physical
meaning is attached to |Ψ(x, t)|2 instead of Ψ(x, t) itself, with |Ψ(x, t)|2 taking on the role of a probability
density. Thus Ψ(x, t) itself is a probability amplitude. This sets up the stage for the next questions
(next Chapter): What is the wave equation for Ψ(x, t)? What are the physical requirements for Ψ(x, t)
to be an acceptable wavefunction?

For more detail, read: PHYS1122 class notes posted in course page. The chapters on key experiments in
Modern Physics or Quantum Physics books are also useful. The first chapter in McQuarrie’s Quantum
Chemistry and Rae’s Quantum Mechanics are also good.

We left the story of the Bohr’s model not discussed. We will fill it in later.

1.1 Planck’s Thermal Radiation Formula (See SQ4)

Planck’s formula of thermal radiation expressed in terms of wavelengths is

u(λ, T ) dλ =
8πhc

λ5
1

ehc/kBλT − 1
dλ . (1)

As c = fλ for EM waves, the formula can be expressed in terms of frequencies as

u(f, T ) df =
8πf2

c3
hf

ehf/kBT − 1
df (2)

(a) Starting with Eq.(2), show that the Stefan-Boltzmann law follows, i.e., total energy goes like T 4.

Hint: Either you may leave an integral unattended (just a number) or use the following integral that
you will see in statistical mechanics course∫ ∞

0

x3

ex − 1
dx =

π4

15
(3)

(b) Starting with Eq.(2), obtain the behavior in the following situations: (i) low frequencies for
which hf � kBT and (ii) high frequencies for which hf � kBT .

[Remarks on underlying physics: Classical physics only gets the results in situation (i) (kBT � hf)
and predicts the same behavior over all frequencies. It is because an oscillator can always be excited
by a finite temperature T , only the extent of excitation depends on T . This breaks down in the
quantum regime when an oscillator requires a minimum energy of hf to be excited. When the
thermal energy kBT is too small to excite an oscillator, that oscillator simply ceases to contribute to
the total energy and gives rise to the correct drop in u(f, T ) at high frequencies.]

(c) (Harder) Starting with Eq.(1), show the Wien’s law follows, i.e., λmax at which the maximum of
u(λ, T ) occurs scales with the temperature T as λmax ∼ 1/T .
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(d) The Planck’s constant h first appeared in the Planck’s formula. It is h = 6.626 × 10−34 J·s (joule-
second). Show that h has the units of an angular momentum.

[Remark on underlying physics: In quantum mechanics, there are many angular momenta, e.g. or-
bital, spin, total, etc. It so happens that they are described in terms of h or h̄ = h/2π naturally. For

example, the “spin angular momentum” of an electron has a magnitude of
√

3
4 h̄ for all the electrons

in the universe, just like each electron has the same charge −e regardless of where it is.]

1.2 Basic manipulations about light (EM waves) and photons

(a) Physics is an experimental science. But reading papers on experiments (or communicating with
experimentalists) could sometimes be confusing simply because of the different “languages” in the
ways that physics is taught (theory) and physics is practiced. In layman’s term, they are “not talking
in the same wavelength”!. This non-scientific statement is partially true in that there are common
practices in what units to use in different parts of the EM spectrum. Now, let’s see what people use
for EM waves in UV (ultraviolet), IR (infrared), and microwave frequencies.

(i) In experiments using UV light, the results are often given in terms of wavelength and in units of
nm (nanometers or 10−9m). For example, take λ = 180 nm, calculate the frequency f and the
wave number ν̃ = 1/λ. Thinking in terms of photons, calculate the energy of a photon.

(ii) In experiments using IR light, the results are often given in terms of wave numbers (defined
above) and in units of cm−1 (centimeter inverse). For example, take ν̃ ∼ 1000 cm−1, calculate
the frequency f and the wavelength λ. Thinking in terms of photons, calculate the energy of a
photon.

(iii) In experiments using microwaves, the results are often given in terms of frequency and in units
of MHz (megaheltz). For example, take f = 18, 000 MHz, calculate the wavelength λ and the
wave number ν̃. Thinking in terms of photons, calculate the energy of a photon.

[Remark: Thus, everybody does “talk in the same wavelength”, only that different quantities/units
are used. It is a fact of life. We have to live with it.]

(b) Given that the work function of chromium is 4.40 eV , calculate the kinetic energy of photo-emitted
electrons from a chromium surface when UV radiation of wavelength 180 nm is used.

1.3 Double-slit and Single-slit experiments

The answer to this question cannot be longer than one side of an A4 page.

Double-slit and single-slit experiments using light and electrons play an important role in learning quantum
mechanics as they brought out the essence of quantum behavior. They point to the need of a wave
description of particles, thus the need of a wavefunction Ψ, and interpreting |Ψ|2 as a probability
density. This problem asks you to review by yourself the key results of these two experiments and how
they come about using wave theory.

Students find the following results confusing, as they look similar but they are referring to different things.

For double-slit experiments in which the separation between the two slits is d, the condition for
constructive interference and thus seeing a maximum on the screen is given by

d sin θ = mλ (4)

where m is an integer. Thus the first maximum from the central maximum is observed at

d sin θ = λ (5)

in a double-slit experiment

For a single-slit experiment in which the slit width is a (some authors called it w), the first minimum
from the central maximum is observed at

a sin θ = λ (6)

Eq.(5) and Eq.(6) are results that you should keep in mind. However, they look so similar and yet they
are talking about different things.
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Students: In less than one-side of an A4 page, describe how the two results Eq.(5) and Eq.(6) come
about from consideration of interference.

[Remarks on underlying physics: These expressions are important for various reasons. One is that these
experiments are useful in determining wavelengths, i.e. d (or a) is known from apparatus, θ can be
observed, and thus λ can be found. Another is that these experiments can be used to illustrate the
Heisenberg Uncertainty Relation, i.e., if a particle is known to pass through a single-slit (thus position
in y-axis known to a range of a (slit width)), such a state necessarily contains many y-direction momentum
components as required by wave mathematics (Fourier analysis). As a result, the observed fanning out
pattern comes from this spread in momentum.]

1.4 Basic manipulations in two-slit experiments

In a two-slit experiment, light of 694.3 nm wavelength is used. On a screen that is 3 m away from the
slits, the distance between neighboring maxima is observed to be 1.5 cm. Find the separation between
the two slits.

1.5 Matter wavelength can be controlled by temperature in experiments

In SQ6, we saw that in the classic 1991 paper in firing helium atoms in a two-slit experiment, the matter
waves of the atoms were controlled by an oven (heat atoms up and firing them out) and two temperatures
(corresponding to two matter wavelengths) were used in the experiment. The point is: higher temperature,
higher kinetic energy, higher momentum, and shorter matter wavelength.

Neutron scattering has become an important tool in studying materials. Being neutral, they can get
deeper into a material than electrons. Neutrons have a magnetic dipole moment, as such they can also
probe magnetic properties of a material. The matter wave wavelength of neutrons can also be controlled
by temperature. Let’s say the speed of a neutron is related to the temperature by v =

√
3kBT/mn, where

mn is the mass of a neutron and we want to tune the de Broglie wavelength to 5 × 10−11 m (or 50 pm
(picometer)). Calculate the necessary temperature.

[Remark: The newly constructed ”big science project” of the China Neutron Spallation Source (CNSC)
in Dongguan (Guangdong, just next to us) produced the first ever pulsed neutron beam in China on 28th
August 2017. The facility is due to operate for scientific research in 2018. Google ”CNSC” for more
detail.]

1.6 Wave equation (string) – Illustrating the key physics (see SQ7)

This problem is meant to bring out a few important concepts in handling wave equations. In QM, the
Schrödinger equation is also a wave equation. Thus, what you do here is also applicable there, only that
the wave equation will be different.

In SQ7, TA did the fundamental frequency. Here, we will work out more. The wave equation for a (guitar)
string is

∂2ψ(x, t)

∂x2
=
µ

T

∂2ψ(x, t)

∂t2
(7)

where T is the tension (you tune the guitar by tightening the screw because that will alter the tension)
and µ is the mass per unit length of the string (that’s why the six strings in a guitar are different), and
ψ(x, t) is the displacement of the string from equilibrium (not vibrating).

We expect (see) that there is wave motion when we play the guitar. And what we see is real (double
meaning here). Therefore, let’s use a real form to describe the (standing) wave

ψ(x, t) = φ(x, t) = A sin(kx) cos(ωt), (8)

where k = 2π/λ is the wave vector and ω = 2πf is the angular frequency. Note that a more general form
of the time part includes a phase in it, but cos(ωt) suffices for our purpose of introducing the key concepts.

(a) Up to here, we only invoke the wave equation and the wave form (although the form considered
something related to a guitar string, e.g. standing waves). Substituting φ(x, t) as in Eq.(8) into
Eq.(7), find a relation between ω and k.

[Remark: An important physics concept here is that the wave equation relates (or governs) the
time and spatial variations of a wave, i.e., for a particular wavelength (thus k), there is a particular
frequency (thus ω).]
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(b) Boundary conditions selects certain allowed wavelengths and thus certain allowed frequencies. Now
consider a guitar string. It is not just a string lying there. It has a certain length L and it is fixed
at the two ends all the time. At this point, it is important to note that what we have is a string
with its properties and two boundary conditions, i.e. fixed at the end ends at the time. We have
not plucked the string yet.

To satisfy the boundary conditions (B.C.) (all the time), we need to enforce it on the spatial part
A sin(kx). It so happens that at ψ = 0 and x = 0, thus the no motion there and thus the B.C. at
x = 0 is taken care of. Now is your turn to consider the B.C. at x = L. Imposing the condition that
the string is fixed at x = L, find the values of the allowed wavelengths λn of the string, with
n = 1 labelling the longest wavelength. Hence, find the corresponding values of the allowed
angular frequencies ωn of the string.

[Remarks: What you did here is a big part of QM problems. You have found the normal mode
frequencies of the string and the corresponding wave forms (normal mode wavefunctions). Note that
(ωn, kn) comes in a pair. In addition, you also know how each mode will evolve in time, simply with
a time factor as An sin(knx) cos(ωnt) or An sin( 2πx

λn
) cos(ωnt), with ωn specific to the mode n.]

(c) Superposition of modes: illustration

Let k4 = 2π/λ3 and k13 = 2π/λ13 be two allowed wavevectors obtained from two allowed wavelengths.
Let’s say at time t = 0, a wave form is created (you hold the string in a funny way at t = 0 to give
the form) so that

ψ(x, t = 0) = A4 sin(k4x) +A13 sin(k13x) , (9)

with A4 and A13 being two coefficients specifying the weighting of the two components in ψ(x, t = 0).
Now, we claim that as time evolves (you release the string from the funny looking t = 0 form), each
component evolves with its own time factor with its own ωn, thus

ψ(x, t) = A4 sin(k4x) cos(ω4t) +A13 sin(k13x) cos(ω13t) . (10)

Show explicitly that Eq.(10) satisfies the time-dependent wave equation Eq.(7).

(d) Superposition of modes: general

This extends the idea in (c). Let’s say at t = 0, the string is held in a funny form given by

ψ(x, t = 0) =

∞∑
n=1

An sin(knx) (11)

Learning from (c), write down ψ(x, t) at any time t > 0 and show that ψ(x, t) satisfies the wave
equation Eq.(7).

[Important Remarks: (i) For any form of ψ(x, t = 0), Eq.(11) can always be written down, thanks
to Fourier. (ii) The instant that you pluck the string (t = 0), you create something like a tilted tent
(e.g. straight line going up from x = 0 to about x = 3L/4 and then straight line going down from
there to x = L). This is ψ(x, t = 0) in Eq.(11). The Fourier coefficients An can be calculated from
the given ψ(x, t = 0). This is a formula to plug. (iii) After knowing An, you know how the string
vibrates at any time t, by allowing each Fourier component to evolve by its own time part based on
its ωn. (iv) For a free string (i.e., not pressed at any point, the whole string vibrates), the tent looks
most like the fundamental (both of them have no nodes) and therefore the dominating component is
the fundamental and the fundamental frequency dominates what you hear (the E sound of the first
string). But it is mixed with the harmonics (An with n = 2, 3, ...) so that you realize immediately
it is the sound of a guitar. (v) For our course, the key point is that all these concepts carry over to
QM, only that the wavefunction in QM is in general complex and the time evolving factor is e−iωnt

instead.]
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