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SAMPLE QUESTIONS FOR WEEK 7 EXERCISE CLASSES (16-20 October 2017)

Read me: TA will discuss the SAMPLE QUESTIONS (SQs) and answer your questions in exercise
classes every week. The SQs are designed to review what you have learnt, tell a physics story, enrich
our discussions, and help you work out the upcoming Problem Set. Your time table should allow
you to attend one exercise class session. The Exercise Classes are an integrated part of
the course. You are encouraged to work out (or think about) the SQs before attending exercise class
and ask the TA questions. Over the semester, you are welcome to seek help from TAs/me.

SQ17 - Fourier Transform is expanding a function in terms of momentum eigenfunctions
SQ18 - Be very careful in measurements and calculations - See if this can confuse you

SQ17 Fourier Transform is the special case of expanding a function in terms of momentum eigenfunc-
tions

In class, we discussed that we could use the eigenfunctions of any quantity represented by Â to
expand a function. Here, we look at the special case where Â = p̂, the momentum operator.

Consider the momentum operator p̂ = h̄
i
d
dx . Show that it has eigenfunctions of the form

ψk(x) =
1√
2π

eikx (1)

with eigenvalues p = h̄k. For later purposes, the eigenfunctions are labelled by k instead of by p,
but they are only off by a constant. The prefactor 1√

2π
is inserted for convenience (stay tuned).

Note that the eigenvalues k are not discrete, but take on continuous values, i.e., any k is
allowed. The reason is simple: The momentum eigenvalue problem does not imply a boundary (or
it is free particle on x-axis). Thus, there is no boundary condition to select discrete eigenvalues.
A by-product is that it is not a bound state. Being not a bound state, the eigenfunctions
cannot be normalized in the usual way. There are several ways out, and each way has its
merits. One way is to invoke something called the Dirac δ-function. Pictorially, δ(x− a) is (i)
zero everywhere for x 6= a, (ii) an extremely sharp spike at x = a, (iii) symmetric about x = a,
and (iv) having an area under the whole function and thus under the sharp spike (which is an
integral) being one. The most useful relation (or definition) of the δ-function is∫ +∞

−∞
f(x) δ(x− a)dx = f(a) (2)

for any function f(x). The RHS is the function’s value at x = a, i.e., at the point of the spike
of the δ-function. If f(x) = 1 (a boring function), it is property (iv) stated above. One can
immediately think of different ways to represent (called representations) the δ-function. For
example, a rectangle of width W and height 1/W centered at x = a with W → 0 will do the job.
Here, you will see another representation. This ends an introduction to the Dirac δ-function.

Recall the Fourier Transform of a function f(x) is

f(x) =
1√
2π

∫ +∞

−∞
φ(k)eikxdk (3)

Consider the case f(x) = eik
′x (which is a function of x, right), using Eq.(2) to show that

φ(k) =
√

2π δ(k − k′) (4)
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But φ(k) can also be found by the Inverse Fourier Transform formula. Show that∫ +∞

−∞
eikxe−ik

′xdx = 2πδ(k′ − k) (5)

Hence, show that a modified way of expressing the “orthonormal” property of the momentum
eigenfunctions ψk(x) in Eq. (1) is∫ +∞

−∞
ψ∗k′(x)ψk(x)dx = δ(k′ − k) = δ(k − k′) (6)

Note that for k 6= k′ (thus different momentum eigenfunctions), the RHS is zero, thus orthogonal.
For k = k′, the RHS is what a δ-function will behave. This reflects the fact that ψk(x) is not
a bound state and cannot be normalized to one. The Dirac δ-function comes into rescue and
“normalize” them differently.

Finally, illustrate that the Fourier Transform and Inverse Fourier Transform are simply the
formulas of expanding any function Φ(x) in terms of the momentum eigenfunctions ψk(x).

[Remark: You see here that the momentum operator is very powerful. Its eigenfunctions can be
used to expand any function, as Fourier told us 200 years ago!]

SQ18 Be very careful in measurements and calculations - See if this can confuse you

We stressed in class the physical meaning of the expectation value 〈A〉 and the uncertainty (∆A)
is related to measurements on identical copies of a system and each copy is measured only once.
This SQ also follows-up Problems 2.4 and 2.5.

An experimentalist prepared a huge number of identical copies of a state of the form

Ψ(x) =

√
1

3
ψ0(x) +

√
2

3
ψ1(x) (7)

where ψ0(x) is the normalized ground state wavefunction of a harmonic oscillator (as used in
Problem 2.5) and ψ1(x) is the first excited state wavefunction.

Case A: A student Alice separates the copies into three equal parts. For 1/3 of the copies,
measurements on the energy E are made (system thrown away after measured once). For another
1/3 of the copies, she measures the position x (and throws copy away after a measurement). For
the remaining 1/3, measurements on momentum p are made.

(a) What are the mean energy 〈E〉 and the uncertainty (∆E)? Explain why we need to consider
these quantities in light of the distribution of the energy measurement outcomes.

(b) What will Alice get for ∆x ·∆p ?

Case B: A student Bob first measures the energy of each copy. He keeps the copies after mea-
surements. He then sorts the copies into two groups according to the energy outcomes. For Group
0 of energy E0, he measures the position on half of the group (one measurement per copy) and
the momentum on the other half of the group (one measurement per copy). He does the same for
the Group 1 of energy E1.

(c) Find ∆x ·∆p for Group 0.

(d) Find ∆x ·∆p for Group 1.

(e) But Bob’s supervisor doesn’t think that there should be two values of ∆x · ∆p. So Bob
thought that he should take into account of the sample sizes of Group 0 and Group 1 and
do some weighting/averages. Try one or two reasonable weighting schemes and compare
results with part (b).

(f) Point out why ∆x ·∆p’s in (b), (c), (d) are different and what they really refer to?
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