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PHYS3021 QUANTUM MECHANICS I

SAMPLE QUESTIONS FOR WEEK 6 EXERCISE CLASSES (9-13 October 2017)

Read me: TA will discuss the SAMPLE QUESTIONS (SQs) and answer your questions in exercise
classes every week. The SQs are designed to review what you have learnt, tell a physics story, enrich
our discussions, and help you work out the upcoming Problem Set. Your time table should allow
you to attend one exercise class session. The Exercise Classes are an integrated part of
the course. You are encouraged to work out (or think about) the SQs before attending exercise class
and ask the TA questions. Over the semester, you are welcome to seek help from TAs/me.

Week 5 was interrupted by two public holidays
SQ14 - Think classical and Go quantum - Operators of quantities
SQ15 - The convenience of Lagrangian
SQ13 - Alternative Go Quantum method and TISE of oscillator in momentum space

SQ14 Think classical and Go quantum - Operators of quantities

With a way of expressing x̂ and p̂ for which the commutator is [x̂, p̂] = ih̄, and knowing x and
p are the variables to express the Hamiltonian H (classical mechanics), other quantities can also
be expressed in terms of x and p and then turned into operators. Hence, QM operators of other
quantities can be readily found.

We considered the components of the angular momentum in class notes. Thinking classically, it
is L = r× p. Going quantum, L̂ = r̂× p̂.

TA: Construct the operator for the angular momentum squared L̂2. [Hint: Easiest way is
to express it in terms of the components.] Then demonstrate the steps in evaluating the
commutator [L̂2, L̂x]. [Students: This is related to what you did in Problem 2.6.]

[Remark: Note that the commutation relation depends only on the commutation relation [x̂, p̂] =
ih̄, but only explicitly on how to express the operators x̂ and p̂. For example, one may express
operators has x, y, z and their derivatives, or (r, θ, φ) and their derivatives, or even go to the
momentum space. What is the momentum space? See SQ16.]

SQ15 The convenience of the Lagrangian

The Hamiltonian, which has its origin from Hamilton’s mechanics, is the starting point of doing
Quantum Mechanics. The formal way (not necessarily the practical way though) in writing
down the Hamiltonian follows that in classical mechanics, namely starting with the Lagrangian→
finding conjugate momentum for each coordinate → transforming to Hamiltonian. Practically,
we often start by expressing the Hamiltonian as the sum of kinetic energy and potential energy
terms.

(a) For a particle m moving in a 2D plane, its position r can be expressed as (x, y) or in plane
polar coordinates (r cos θ, r sin θ). Similarly, one could write down ṙ, etc. With the kinetic
energy terms (2D) only, the Lagrangian can be expressed as

L =
m

2

(
ṙ2 + r2θ̇2

)
(1)

Note that we don’t include a potential energy function V (x, y) or V (r, θ) into the considera-
tion here. There are two coordinates r and θ.

TA: Identify the momentum pr associated with r and the momentum pθ associated with θ.
Hence, write down the equations of motion using the Euler-Lagrange equation. Inspect
L(r, ṙ, θ, θ̇) and identify which one is a conserved momentum. Construct the Hamiltonian.
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(b) 2D rigid rotator (or rotor). Next, we consider a special case in which the particle is
restricted to move only on a circle of radius R, i.e. r = R being a constant. (Think
classical) In this case, θ is the only coordinate. TA: Identify the momentum and construct
the Hamiltonian. (Go Quantum) Turn θ and pθ into operators and write down the time-
independent Schrödinger equation. You may want to define the moment of inertia I in
expression the resulting equation.

SQ16 1D oscillator in momentum space

According to Dirac (1925 paper, see class notes), the commutator [x̂, p̂] = ih̄ is all of quantum
mechanics. We showed in class that the substitution x̂ → x and p̂ → h̄

i
d
dx indeed satisfies the

relation.

TA: There may be other ways to do the job. TA: Check that the substitution x̂ → ih̄ d
dp and

p̂→ p also satisfies Dirac’s relation. In this way, operators act on functions of the momentum p,
i.e. f(p). We are thus working in the momentum space.

TA: Starting with the Hamiltonian (think classical) of an oscillator

H =
p2

2m
+

1

2
mω2x2 , (2)

go quantum by making the substitution to obtain TISE of an oscillator in the momentum space.

In Problem 2.5, students worked on the 1D oscillator problem in position space (or x-space) and
tested a given wavefunction to be an energy eigenfunction with the lowest energy (ground state
wavefunction) and normalized it. There, everything was written in x and the wavefunction is
ψ0(x).

TA: Copy down the corresponding TISE in position space and the corresponding ground state
wavefunction (from solutions to Problem 2.5). By comparing the forms of TISE’s in momentum
space and coordinate space, suggest a form of the ground state wavefunction φ0(p) in the momen-
tum space. [No detailed calculations needed here. Just draw analogy between the two equations
and write down the wavefunction.]

Hence, test that your proposed φ0(p) is really a solution to TISE in momentum space (thus
Ĥφ0(p) = E0φ0(p)) and find the corresponding eigenvalue (which is the ground state energy).

[Remarks: This illustrates that one can do QM not only in the x-space, but also in the p-space. The
results contain no more and no less information. We usually work things out in x space because
we have a better sense (or we think that we have a better sense) when considering the physics in
x-space. As the physics content is the same, there is no reason to train yourself intentionally to
do physics in the momentum space, until you become very familiar with the standard treatments.
Students: In Problem 2.5, you started in the position space and did a Fourier transform to go
into the momentum space. It will be an interesting exercise to re-phrase Problem 2.5 by yourself
and re-do it by starting with the momentum-space and then doing a Fourier transform to go
(back) to the (more familiar) position-space.]
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