
PHYS3022 APPLIED QUANTUM MECHANICS

SAMPLE QUESTIONS FOR DISCUSSION IN WEEK 8 EXERCISE CLASSES (4 -
8 March 2019)
The Sample Questions are designed to serve several purposes. They either review what you have
learnt in previous courses, supplement our discussions in lectures, or closed related to the questions
in an upcoming Problem Set. Students should be able to do the homework problems independently
after attending the exercise class. You should attend one exercise class session. You are
encouraged to think about (or work out) the sample questions before attending exercise class and
ask the TA questions.

Progress: In Week 7, we started to discuss how light and matter (atoms) interact. In particular,
we focus on the context of atomic transitions. The problem is an initial value problem with a time-
dependent perturbation in the Hamiltonian. The technique involes the time-dependent
perturbation theory and its consequences include selection rules, energy criteria for transitions
to occur, stimulated absorption and stimulated emission rates. At the end, QM can calculate what
Einstein called his B coefficients. Spontaneous emission is harder to understand within Schrödinger
QM but progress can be made via Einstein’s A and B coefficients and how they are related. With
QM telling us what the B coefficient is, the relation gives us Einstein’s A coefficient related to
spontaneous emission.

SQ18 - Full equations for da1/dt and da2/dt in a two-level system under the influence of Ĥ ′(t)
SQ19 - Electric dipole matrix elements, forbidden and allowed transitions in hydrogen atom between
n = 1 and n = 2 states

SQ18 Full equations for da1/dt and da2/dt in a two-level system under the influence of Ĥ ′(t)

In class and class notes, we focused on the context of a two-state system (a state 1 and another
state 2) with the initial conditions a1(0) = 1 and a2(0) = 0, i.e., it is certain that the system is
in state 1 at time 0. The perturbation term Ĥ ′(~r, t) is time dependent and spatial dependent,
and it kicks in for t > 0. For the electric dipole mechanism, Ĥ ′(~r, t) = e~E0 · ~r cosωt.

We then derived the following equation for da2/dt (which is Eq. (17) in class notes on page
LMI-I-30):

ih̄
da2
dt

= a1(t)e
i
h̄
(E2−E1)t

∫
ψ∗2Ĥ

′ψ1d
3r + a2

∫
ψ∗2Ĥ

′ψ2d
3r (1)

We have not given explicitly the corresponding equation for da1/dt in class notes.

(a) Show that the equation for da1/dt is given by

ih̄
da1
dt

= a1(t)

∫
ψ∗1Ĥ

′ψ1d
3r + a2(t)e

i
h̄
(E1−E2)t

∫
ψ∗1Ĥ

′ψ2d
3r (2)

Equations (1) and (2) are exact, i.e., no approximations have been made so far. Note the
parallelism between the two equations. [Thus, it will be easy to write down all equations
even when there are more levels.]

Typically, the perturbation Ĥ ′(~r, t) connects two different states, i.e.,
∫
ψ∗nĤ

′ψnd
3r = 0

in most problems. Under this condition, write down the set of equations for da1/dt
and da2/dt.

(b) Zeroth-order approximation: Let’s simply ignore everything about Ĥ ′(~r, t). Argue that
the zeroth-order results are simply a1(t) = 1 and a2(t) = 0. [Remark: This is what we
expected in the absence of Ĥ ′(t).]
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(c) First-order approximation: Previously in perturbation theory, we saw that we need the
zeroth-order results to get at the first-order results, and so on. In time dependent
perturbation theory, it is the same. Plug the zeroth-order results into the two equations
to obtain the first order results for a1(t) and a2(t) as

a1(t) = 1 , a2(t) = − i
h̄

∫ t

0
e

i
h̄
(E2−E1)t′

(∫
ψ∗2Ĥ

′(~r, t′)ψ1d
3r

)
dt′ (3)

Note that the integral involving d3r is a spatial integration and the result is a function
of t′. Then, the integral involving dt′ is over time and it gives a2(t) at the time t.

Eq. (3) is where we started in obtaining the selection rules, transition rates, and life time.
Here, we show that explicitly we are working on first order time dependent perturbation
theory.

[Remark: For those who want to develop the theory to 2nd order, plug the 1st order
results into Eq. (1) and (2) to obtain a1(t) and a2(t) again.]

SQ19 The integral that determines selection rules and Hydrogen atom’s “Matrix element” for tran-
sitions between n = 1 and n = 2 states

From SQ18, we see that when a system is initially in an eigenstate ψinitial of Ĥ0 (or Ĥatom),
the probability amplitude afinal(t) of finding the system in another eigenstate ψfinal is related
to a spatial integral:

afinal(t) ∝
∫
ψ∗final(r) Ĥ ′(~r, t) ψinitial(r) d3r (4)

Here, we used r and ~r interchangeably. They mean the same thing. We focus on this
spatial integral. For Atom-Light interaction, the most important mechanism is the interaction
between the electric dipole moment ~µel and the electric field ~E in EM wave. Thus, Ĥ ′ =
−~µel · ~E = −~µel · ~E0 cosωt. It follows from Eq. (4) that

afinal(t) ∝
∫
ψ∗final(r) ~µel ψinitial(r) d3r ≡ [~µ]fi (5)

Eq. (5) is the key to understand the selection rules under the electric dipole mechanism. It
is the “electric dipole matrix element”, as it is labelled by two indices (the initial i and
final states f).

In the special case of a single electron (e.g. hydrogen atom), ~µel = −e~r. A transition from
an initial (state 1) to a final state (state 2) occurs with a probability amplitude proportional
to a spatial integral given by

a2(t) ∝ rfinal,initial =

∫
ψ∗final(r) r ψinitial(r) d3r . (6)

The integral is a vector. There is a dot product with the field ~E to give a scalar. The integral
is usually handled numerically for atoms and molecules. This is the “position matrix element”
(also related to the momentum matrix element) that determines a2(t). The probability of a
transition from state 1 to state 2 after Ĥ ′ is applied for a time t is |a2(t)|2.
For the hydrogen atom, the integral can be evaluated analytically. This integral plays an
important role for stimulated processes AND spontaneous emission, as well as setting selection
rules. We have encountered such integrals in a previous problem on atomic polarizability.
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(a) Let’s consider transitions in a hydrogen atom. Consider a transition from 1s to 2s. By
inspecting the integral

a2(t) ∝ r2s,1s ≡
∫
ψ∗2s(r) r ψ1s(r) d3r =

∫
ψ∗200(r) r ψ100(r) d3r , (7)

show that it vanishes and thus the transition is not allowed (forbidden) by the electric
dipole mechanism.

[Remark: If one can excite a hydrogen atom to the 2s state by some way, it cannot relax
back to 1s by spontaneous emission via the electric dipole mechanism. It implies that
the 2s state has a longer life time than the other excited states. It is a meta-stable state.]

(b) For hydrogen atom, the transition between 1s and 2p is allowed. In this case, the integral
that matters is

a2(t) ∝ r2p,1s ≡
∫
ψ∗2p(r) r ψ1s(r) d3r (8)

Recall that there are several 2p states because m` = +1, 0,−1. So let’s be concrete.
Consider the transition between the 1s ground state and 2p state of m` = +1 for which
the angular part is Y11(θ, φ). Thus, ψ2,1,+1(r) is the final state and ψ1,0,0(r) is the initial
state. The integral in Eq. (8) for this transition becomes

a2(t) ∝ r2p,1s ≡
∫
ψ∗211(r) r ψ100(r) d3r (9)

(i) In Eq. (9), the integral is a vector because r is a vector. Explicitly, writing

r = xx̂+ yŷ + zẑ = r sin θ cosφ x̂+ r sin θ sinφ ŷ + r cos θ ẑ , (10)

evaluate the integral in Eq. (9). It is important to note that the answer is a vector
and in general complex. [TA: Give the answer in unit of the Bohr radius.]

(ii) For (stimulated) absorption, consider an external field ~E = E ẑ, i.e., the incident
light is linearly polarized in z-direction (so the propagating direction is not z).
The perturbative term in the Hamiltonian Ĥ ′ = −~µel · ~E implies that it is the ẑ-
component of r2p,1s that matters. Argue that such a linearly polarized light cannot
stimulate an absorption from ψ1,0,0(r) to ψ2,1,+1(r). Discuss that such a linearly
polarized light cannot stimulate an emission from (2, 1,+1) to the ground state
(1, 0, 0). Further discuss the condition for the component z2p,1s to be non-zero for
transitions between 1s and 2p states.

(iii) Now consider circularly polarized light. Let the propagation direction be the z-
direction. From EM theory, its electric field is on the x-y plane. In particular, a
circularly polarized light with its polarization specified by e+ ∝ (x̂ + iŷ) has its
electric field rotating with time at a fixed point in space (note that there is an time
factor e−iωt in the field that gives the rotating behavior). Now let’s do QM. Show
that such a circularly polarized light can indeed stimulate a transition between
ψ1,0,0(r) and ψ2,1,+1(r).

[Implication: Skillfully using circularly polarized light can selectively induce transitions
and thus put atoms into a particular excited state. In recent years, techniques in cold
atom physics (cooling atoms down to nano-Kelvin) also use circularly polarized light to
induce selected transitions.]
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