
PHYS3022 APPLIED QUANTUM MECHANICS

SAMPLE QUESTIONS FOR DISCUSSION IN WEEK 7 EXERCISE CLASSES (24
Feb - 1 March 2019)
The Sample Questions are designed to serve several purposes. They either review what you have
learnt in previous courses, supplement our discussions in lectures, or closed related to the questions
in an upcoming Problem Set. Students should be able to do the homework problems independently
after attending the exercise class. You should attend one exercise class session. You are
encouraged to think about (or work out) the sample questions before attending exercise class and
ask the TA questions.
Progress in our course: For many-electron atoms (and molecules), we made approximations to
turn the problems into single-electron problems. Self-consistency is often invoked in these methods.
The end results are atomic orbitals. We then introduced the requirement that many-electron
wavefunctions must be anti-symmetric with respect to interchanging any two electrons. This is
a more general statement than the Pauli Exclusion Principle. This anti-symmetric requirement must
be satisfied when we fill electrons into the atomic orbitals. This step leads to the Pauli Exclusion
Principle. Atomic orbitals (self-consistency methods) and Pauli Exclusion Principle are the
key concepts in understanding the periodic table.

SQ15 Slater determinant for three fermions in three different states
SQ16 Two non-interacting particle in 1D harmonic oscillator

SQ16 Three-electron wavefunctions - Slater determinants (See Problem 4.1)

Consider three electrons (three fermions) in three different single-particle states (after using
IPA say) labelled a, b, c with wavefunctions φa, φb and φc. [Note: Sometimes, the label a
could already carry a spin information, e.g. “1s-up” or “1s↑”. For example, the ground state
of lithium atom can be thought to have electrons in 1s-up, 1s-down, and 2s-up (could be
2s-down).]

A wavefunction that has the correct anti-symmetric property is given by a Slater determi-
nant

ψ(1, 2, 3) ∝

∣∣∣∣∣∣∣
φa(1) φb(1) φc(1)
φa(2) φb(2) φc(2)
φa(3) φb(3) φc(3)

∣∣∣∣∣∣∣ (1)

Here, 1, 2, and 3 are the coordinates of particles 1, 2, 3, respectively. This SQ reminds you
of some basic determinant properties and illustrates that determinants are useful (thus why
you need to learn them in other courses).

(a) Find the normalization factor in front of the expression, given that each single-
particle state φ is properly normalized. [Remark: This is a counting problem. The
normalization factor is related to the number of terms in the right-hand side of Eq. (1).]

(b) Show that ψ(1, 2, 3) is anti-symmetric with respect to interchanging any two particles.

(c) There is a problem if we assign two particles into the same single-particle state. Illus-
trate what the problem is when two of the three states are identical. Hence, point out
that the Pauli Exclusion Principle stating “two electrons cannot occupy the same state”
also follows from Eq. (1).

(d) Another important and interesting observation from Eq. (1) is that two fermions tend
to avoid each other. Let’s take the coordinates to be spatial coordinates r1, r2, r3
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for three fermions and hence ψ is the spatial part of a 3-fermion wavefunction. In this
case, Eq. (1) becomes

ψ(r1, r2, r3) ∝

∣∣∣∣∣∣∣
φa(r1) φb(r1) φc(r1)
φa(r2) φb(r2) φc(r2)
φa(r3) φb(r3) φc(r3)

∣∣∣∣∣∣∣ (2)

Show that when any two fermions take on the same location in real space, the spa-
tial wavefunction vanishes. By invoking the Born’s interpretation of the wavefunction,
state what it means. [Remarks: This is NOT a big problem, as for other choices of
the coordinates, the wavefunction does not vanish. Thus, an antisymmetric spatial
wavefunction has the property that the particles tend to avoid each other.
This is an important concept. Note that this property comes entirely from the anti-
symmetric form of the wavefunction. This avoidance of particles is there even there is
no physical interaction between particles. This is why ideal (non-interacting) Fermi
gas and ideal (non-interacting) Bose gas behave differently. This takes us to SQ17.]

[Remark: Students may want to generalize the problem to N electrons in N different
states.]

[Remarks: John C. Slater made important contributions to the understanding of matter
(atoms, molecules, solids) using quantum mechanics. He wrote several classics textbooks.
See Quantum Theory of Atomic Structure (2 volumes), Quantum Theory of Matter, Quantum
Theory of Molecules and Solids (2 volumes) all by Slater. There are other books on Mechanics
and Electromagnetism. Slater was the Physics Department Chairman of MIT from 1930-1950
and built it up to what we know it now.]

SQ17 Two non-interacting particles in 1D harmonic oscillator and Plots (See Problem 4.2)

This SQ illustrates the important effect of symmetry in two-particle spatial wavefunctions.

Consider two non-interacting but indistinguishable particles under the influence of a 1D
parabolic potential energy function, i.e., 1D harmonic oscillator (HO). The oscillator ground
state wavefunction is ψ0, the 1st excited state is ψ1, etc. We know the energy eigenvalues and
eigenstates for 1D harmonic oscillator. We focus on two-particle spatial wavefunction here.
We ignore the spin part in this problem.

(a) For the situation of the two particles both in the HO ground state, write down the 2-
particle wavefunction ψ(x1, x2) and show that it must be symmetric. [Remark: Thus
it must go with an anti-symmetric spin part.]

(a’) At this point, TA will introduce a way to make 3D plots. We will need to do 3D plots
in Problem Set 4. There are many ways to do that and you are welcome to use your
favorite way.

(b) Plot ψ(x1, x2) and |ψ(x1, x2)|2 as a function of x1 and x2. Note that it is a 3D plot
with x1 and x2 along two axes and ψ(x1, x2) in the third axis. [TA: Lead students to
see from the figure what a symmetric ψ(x1, x2) means.]

(c) Consider the case that one particle is in HO ground state φ0 and another in the first
excited state φ1. Construct a two-particle spatial wavefunction ψ(sym)(x1, x2) which
is symmetric with respect to interchanging the two particles. Plot ψ(sym)(x1, x2) and
|ψ(sym)(x1, x2)|2.
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(d) Consider the same case that one particle is in HO ground state φ0 and another in the first
excited state φ1. Construct a two-particle spatial wavefunction ψ(antisym)(x1, x2) which
is symmetric with respect to interchanging the two particles. Plot ψ(antisym)(x1, x2)
and |ψ(antisym)(x1, x2)|2 [TA: Lead students to see from the figure what a antisymmetric
ψ(x1, x2) means.]

(e) Discuss the key features in the plots. In particular, locate where the two particles
are more likely and less likely to be found and how these places vary according to the
symmetry of the 2-particle wavefunction.

[Important Remarks: Again, the two particles do NOT interact in any way. Nonetheless,
depending on the symmetry of the spatial wavefunction, they tend to come together
or they tend to avid each other! This is an entirely quantum effect. It is as if
there is an effective interaction induced by the required symmetry of the many-particle
wavefunction.]
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