
PHYS3022 APPLIED QUANTUM MECHANICS

SAMPLE QUESTIONS FOR DISCUSSION IN WEEK 10 EXERCISE CLASSES (18
- 22 March 2019)
The Sample Questions are designed to serve several purposes. They either review what you have
learnt in previous courses, supplement our discussions in lectures, or closed related to the questions
in an upcoming Problem Set. Students should be able to do the homework problems independently
after attending the exercise class. You should attend one exercise class session. You are
encouraged to think about (or work out) the sample questions before attending exercise class and
ask the TA questions.
Progress: In Week 9, we discussed the energetics of ionic bond, the full QM molecular problem,
Born-Oppenheimer approximation, LCAO in solving the electronic part of the simplest problem of
H+

2 molecular ion, and the result is the emergence of bonding and anti-bonding molecular orbitals
(MO’s).

SQ22 - Overlap integral S(R) for H+
2 molecular ion: R-dependence and exact evaluation

SQ23 - LCAO for atomic orbitals from two atoms differ much in energy

SQ22 Normalizing ψ+ LCAO wavefunction in H+
2 ion and evaluating S(R) for nuclei at

a separation R.

In the electronic part of H+
2 molecular ion problem, one electron is under the influence of

two protons. Each separation R of the two protons constitutes a separate QM problem.
When considering the ground state of H+

2 , by physical sense we would think “Ah! The electron
is on A-side atomic ground state. But...the electron can also be on B-side. We couldn’t tell.
So...we form a linear superposition of these two possibilities.” And this results in the following
wavefunction, which is the essential of LCAO (Linear Combination of Atomic Orbitals)!

(a) Any separation R. We may write down the bonding MO as

ψ+(r) = CAψ1s,A + CBψ1s,B (1)

and then do a variational calculation. Here ψ1s,A and ψ1s,B are the normalized 1s
atomic orbitals for a nuclei located at RA and RB, respectively. You may regard A to
be on the left and B on the right.

For H+
2 , the problem is easier. The symmetry of the problem informs us that what you

will call the A-side would be another person’s B-side (e.g. someone behind the white
board) as both sides correspond to a hydrogen nucleus (proton). This symmetry comes
from the form of U(r) of what the electron sees. Thus, simply by symmetry argument,
we expect CA = CB (more formally |CA|2 = |CB|2) and hence the bonding MO can be
written as

ψ+(r) = C+(ψ1s,A + ψ1s,B) , (2)

where C+ is a normalization constant to be determined. This argument is valid regardless
of the separation R. But the normalization constant C+ will depend on R, as shown
below.

TA: Show that the normalization constant C+ is in general given by

C+ =
1√

2(1 + S)
, (3)
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where the number S is an integral given by

S(R) =

∫
d3r ψ∗

1s,A(r)ψ1s,B(r) =

∫
d3r ψ∗

1s,B(r)ψ1s,A(r) =

∫
d3r ψ∗

1s(r−RA)ψ1s(r−RB)

(4)
with the integrals taken over all space. [Note that hydrogen 1s state has real wavefunc-
tion.] This is the Sji in turning TISE into a big matrix. The last term gives the long
form of what S(R) is about, with R = |RA − RB|. This integral is called the Over-
lap Integral. Point out clearly that, since the two atomic orbitals are centered at
different nuclei, S is in general nonzero and it is a function of R.

(b) Draw schematically a diagram with two 1s atomic orbitals (exponentially decaying
from a location xA (just consider x-coordinates for simplicity) and another decaying
from xB. Illustrate and explain that for large separations R = |xA−xB|, the integral
S = 0. Similarly, for smaller R where the two 1s orbitals come closer, sketch the
integrand in S and illustrate that S is nonzero.

(c) It turns out that the integral S(R) can be evaluated exactly. Although the mathematics
is tedious, the answer (in atomic units) is simple. It is

S(R) = e−R

(
1 +R+

R2

3

)
, (5)

where R is the inter-nuclear separation (in units of the Bohr radius a0). Plot S(R) as
a function of R. Evaluate S(R) at R = 2 (meaning twice the Bohr radius), say. [Note
that R = 2 is close to the equilibrium separation in H+

2 .]

(d) This part is optional for exam purposes. It is only for the TA to show off.
Evaluate the integral S(R). Try to use a method that is easier for students to follow.
This is meant to illustrate that H+

2 ion is simple enough for LCAO integrals to be
calculated exactly.

(e) Show the other (odd) linear combination

ψ−(r) = C−(ψ1s,A − ψ1s,B) (6)

has a different normalization constant C−.

[Remark: The same method of evaluating S(R) can be applied to evaluate the other two
integrals J(R) and K(R) in the discussion of LCAO-MO.]

SQ23 LCAO for atomic orbitals from two atoms differ much in energy - ionic character
of bonding - Think like a physicist

This SQ is a sketchy and qualitative way to think about LCAO and its results. The point is
to illustrate that simply 2×2 matrix mathematics can do a lot of things (c.f. Problem Set 1).

Hydrogen 1s atomic orbital has an energy of EH,1s = −13.6 eV. Fluorine 2p atomic orbital
has an energy of EF,2p = −18.7 eV. The point is that they are off by a big energy difference
of ∼ 5 eV.

Let’s consider a hydrogen atom and a fluorine atom come together to form HF. [Remark:
HF is a highly dangerous compound when it meets moisture. It will lead to
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blindness and it will eat into your bone! So it is safer to study its quantum mechanics
than using it.] As they come closer, electrons see the potential energy functions of the two
nuclei instead of one. In any case, we have a Hamiltonian Ĥ. Now we want to set up
schematically LCAO to consider the formation of molecular orbitals. A sensible minimal
choice is to invoke hydrogen’s 1s (one electron is there ready for bonding) and one 2p-state
from fluorine (there is one 2p-state with a lonely electron waiting to form bond). It doesn’t
matter which 2p-state it is. It is because when two atoms form a bond, there is a special
direction corresponding to the line joining the two nuclei. We can call this line (direction)
whatever we like. If we call it the z-direction, then it is 2pz that matters and there is a lone
electron in there ready for bonding. So the situation becomes one electron is hydrogen
1s and one electron in fluorine 2p and they come together to form a bond. Now,
we can imagine that we form a linear combination

ψ = CH ψH,1s + CF ψF,2p (7)

and use it as a trial wavefunction for a variational calculation. The end result is a 2×2 matrix
equation of the form (sketchy here, but the physics is right)(

EH,1s ∆
∆∗ EF,2p

)(
cH
cF

)
= E

(
cH
cF

)
(8)

As the difference (EH,1s − EF,2p) ≈ 5 eV, it is usually much bigger than |∆|. Eq. (8) is the
equation that should come to an educated mind when two atoms come together to form a
bond.

Solve for the two molecular orbitals. In particular, show that the bonding orbital (the
one of lower energy) is dominated by Fluorine (i.e. Fluorine in character), while the anti-
bonding molecular orbital (the one of higher energy) is dominated by hydrogen (i.e., hydrogen
in character). [Recall: For matrix of the form in Eq. (8), “The lower energy state pushes the
higher one higher, and the higher energy state pushes the lower one lower”.]

As there are two electrons waiting to form bond, they go into the bonding state. Show that
forming HF could indeed lower the energy. Discuss that the resulting state has a strong
ionic character with the electrons having a heavy weighting to be on the fluorine side, thus
forming what is called a F− ion.

[Remark: For a 1D analogy, it is a shallow well and a deeper well come together for a molecule.]
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