PHYS3022 Applied Quantum Mechanics Problem Set 4

Due Date: 1 March 2019 (Friday) “T+2” = 4 March 2019

All problem sets should be handed in not later than 5pm on the due date. Drop your assignments in the
PHYS3022 box outside Rm.2183.

Please work out the steps of the calculations in detail. Discussions among students are highly encouraged,
yet it is expected that we do your homework independently.

4.0 Reading Assignment.

%@@

After introducing the concepts of orbital and spin angular momenta, spin-orbit interaction, total
angular momentum, relativistic correction, fine structure, Zeeman effect in strong and weak mag-
netic fields, hyperfine structure and radio astronomy within the context of the hydrogen atom,
Part 1T of the Physics of Atoms module discussed atoms beyond the hydrogen atom. Without the
electron-electron Coulomb interaction, the hydrogen atom problem is solvable. Quantum mechanics
is perfect alright and essential for the understanding of the physics of multi-electron atoms, only
that the Schrodinger equation cannot be solved analytically. There are two levels of understanding
atoms. Level 1 is the big picture (key ideas). They are covered in standard texts such as Modern
Physics (e.g. by Taylor, Zafiratos, Dubson; and by Harris) or Quantum Physics (e.g. by Eisberg
and Resnick). These books describes the ideas clearly. For those who want to know more about
the theory behind the independent particle approximation using the self-consistent field (Hartree
and Hartree-Fock) approximation (Level 2), see Physical Chemistry and/or Quantum Chemistry by
Donald McQuarrie. For those interested in exploring numerical calculations on atoms (molecules
and solids), you may start with the free numerical package called Quantum Espresso available
on the web. Many experimental and quantum chemistry research groups purchased a commercial
software called Guassian for QM calculations. The next question is about filling electrons into the
atomic orbitals. The key regulation is that a many-electron wavefunction must be anti-symmetric
with respect to interexchanging the coordinates of two particles. This is due to the indistinguisha-
bility of the particles.

4.0.1

Mid-Term Examination — Please be reminded that the Mid-term Examination will be held on 16
March 2019 (Saturday) morning at 10am - 12noon in SC L1. Please pay attention to email about
the exam coverage.

4.1

Writing down the ground state wavefunction of Beryllium atom formally

Many-electron wavefunctions must be anti-symmetric with respect to interchanging two electrons.
This requirement can be readily implemented within the independent-particle approximation. There
are single-electron states (atomic orbitals), which can be obtained by different ways. Electrons are
filled into the atomic orbitals. For two-electron systems, we illustrated in class (see other problems
in this Problem Set) that the wavefunction can be expressed into a product of a spatial part and a
spin part. This factorization, however, may not be possible for other many-electron systems.

Beryllium is the 4th element in the periodic table. It has 4 electrons. In the ground state, the four
electrons occupy the “ls-up”, “ls-down”, “2s-up”, and “2s-down” states. We use ¢141, @151, P2st,
and ¢os) to represent these four normalized states. The key point is that (i) we can’t tell which
electron is in which state as they are indistinguishable, and thus (ii) the four-electron ground state
wavefunction must change a sign when two particles are interchanged. We use 1, 2, 3, 4 for the
coordinates of the four electrons.

(a) The situation is that we have four electrons in four different states. Write down a Slater
Determinant that represents a properly normalized ground state wavefunction of Beryllium.



(b) Argue or illustrate that your answer in (a) is really anti-symmetric.

()
(d)

()

If you were to put two electrons into 1s-down and leave 1s-up empty, what would happen
to the corresponding 4-electron wavefunction?

There are two up-spin states. For the two electrons in these up-spin states, we have one
electron in 1s and another in 2s. Discuss what will happen to the wavefunction when we force
these two electrons to be at the same place in space.

A 4 x 4 determinant looks scary, does it? Look up how to write the determinant (4x4) into
many terms with each term being a product of the four states.

4.2 Forming two-particle states from single-particle states

This is an important problem that Every CUHK student must do. The results will be
useful in Statistical Mechanics, Astrophysics, and cold atom physics. It is related to the simplest
QM problem — 1D particle-in-a-box. Do it yourself! If not, the loss will be yours!

(a)

Consider a particle of mass m confined in a 1D infinite well of size L, e.g. 0 <z < L. [No
derivation needed — you did it the previous course.] Write down the normalized energy
eigenstates 1, (z) and the corresponding energy eigenvalues F,. These are the single-particle
states in this problem.

Forming two-particle states - distinguishable particles. Consider two distinguishable
particles of the same mass in a 1D well. The particles are non-interacting (e.g., they are
chargeless). Given that particle 1 (labelled “1” or carrying a color red) is in the state ¥y,
and particle 2 (labelled “2” or carrying another color blue) is in the state 4y, write down a
two-particle wavefunction tg;s:(z1,22). What is the corresponding energy eigenvalue? Find
the probability that both particles are in the left hand side of the well, i.e., the probability
that a measurement shows 0 < 3 < L/2 and 0 < z9 < L/27

Forming two-particle states - symmetric spatial wavefunction. Similar to (b), but
now the two particles are indistinguishable (identical). Don’t worry about the spin
part of the total wavefunction for the moment and focus on the spatial part.
Write down a two-particle wavefunction 9sym (1, 22) that is symmetric with respect to
interchanging the coordinates z; and z2 of the two particles. Hence, find the probability
that both particles are in the left hand side of the well, i.e., the probability that a measurement
shows 0 < 21 < L/2 and 0 < z3 < L/2?7 Compare your result with that in (b) and comment?

Forming two-particle states - antisymmetric spatial wavefunction. Similar to (b), but
now the two particles are indistinguishable (identical). Again, don’t worry about the spin part
of the total wavefunction for the moment and focus on the spatial part. Write down a
two-particle wavefunction ¥gnei (%1, z2) that is anti-symmetric with respect to interchanging
the coordinates z; and zz of the two particles. Hence, find the probability that both
particles are in the left hand side of the well, i.e., the probability that a measurement shows
0 < 21 < L/2 and 0 < 3 < L/2? Compare your results with those in (b) and (c) and
comment?

Make an observation — Which symmetry has an enhanced probability (relative to the case
of distinguishable particles) of finding the two (non-interacting) particles in the same side?
Which symmetry has a reduced probability of finding the two particles on the same side?

[Read me: Let’s take a break. Recall that the system we are considering is that of two
non-interacting particles in a 1D well. Although the particles are non-interacting, and yet
the symmetry of the spatial wavefunction has an effect that seems to pull the particles closer



OR to push the particles farther apart. It looks as if the “exchange symmetry requirement”
leads to a “effective force” between the particles (either attraction or repulsion). This is called
the exchange force and it plays a fundamental role in many phenomena, e.g., the origin of
magnetism when we include spin wavefunction into consideration.]

(f) MUST TRY! A picture is worth a thousand words Let’s say one particle is in the
single-particle ground state m = 1 (thus 1) and another in the 1st excited state n =2 (thus
1h9). Here you need to (find a way to) do some 3D plots. Use your favorite graphic software
and plot Ygisi (1, 22), Ysym (21, T2), and Yansi (21, x9) as a function of 1 and x for the range
0 <z < L and 0 < 29 < L. Note that these are 3D plots, as one axis being z1, another being
z9 and the third axis is the quantity you want to plot.

(g) Also plot [aist (x1, T2) |2, lzpsym(xl,:cg)[z, and |Yanti (1, 2)[? as a function of z; and zy for
the range 0 < 21 < L and 0 < zp < L.

Important: At this point, look at the plots carefully and comment on the difference between
[hsym (21, 72)|? and [Yanti (71, ©2)|*. In particular, comment on the difference between the two
cases when the two particles are at the same place, i.e, when 1 = z3.

(h) Identical Bosons. Let’s consider the ground state of the two identical non-interacting bosons
in a 1D well. (These bosons have zero spin (quantum number s = 0), say, and they don’t obey
the Pauli exclusion principle.) Construct the ground state wavefunction.

(i) Identical Fermions - Ground State. Construct the ground state (total) wavefunction
for two non-interacting identical spin-1/2 particles (thus fermions) in a 1D well (include the
spin part of the wavefunction in your answer). For example, you may use o and B to denote
the spin-up (7/2) and spin-down (—7/2) states, respectively.

[Hint: Tt will be useful to review how two spin-half can be added up into § = 0 (singlet)
and S =1 (triplet) states, and the mathematical forms of these states. This was discussed in
adding two angular momenta.]

(j) Identical Fermions - Excited States. An excited state of the system in (h) is that one
particle is in 11 and the other in 9);. Construct all the possible total wavefunctions that
satisfy the antisymmetric requirement. Identify the spin singlet S = 0 state and the spin
triplet S = 1 states.

Finally, let’s say there is actually a repulsive (e.g. Coulomb) interaction between the two
fermions, would the S = 0 state or S = 1 states have a lower energy? Don’t try to do any
calculation, but explain your answer.

4.3 Helium Atom - Excited States (1st order perturbation theory)

This is another must try/do problem as it carries much physics. In class notes and SQ14, we
applied 1st order perturbation theory to find the ground state energy. We also discussed the excited
states in class notes for which you will explore the details here, based on the 1st order perturbation
theory. The aim here is to “force you” to go over the steps in slow motion so that you can see by
yourself how different terms emerge.

The helium atom Hamiltonian is given by
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where r13 = |r1 —rg|. The first four terms form the unpelturbed Hamiltonian H, 9. The last electron-

electron interaction term is the perturbation term H'. Here, you will “work out” the excited states
energies (without doing the integrals explicitly).



Consider the unperturbed Hamiltonian Ho (first four terms in Eq. (1)). It is two hydrogen-like
problems. Thus, Hy can be solved analytically. We now explore the lowest excited states of two
electrons. For Hy, it is a separable problem. Low-energy excited states can be visualized as having
one electron in 1s with wavefunction ¢;, and another electron in 2s with wavefunction ¢sas. [You
don’t need the explicit forms of ¢1, and ¢g, here, although they are known.] But the two electrons
are indistinguishable. Let o and B denote the states of spin-up (m, = 1/2) and spin-down
(ms = —1/2) of an electron, respectively.

(a) For the excited states, write down the possible normalized two-electron states and classify
them into those corresponding to S = 1 (triplet states) and S = 0 (singlet state). [Hint: You
did this in Problem 4.2. See also class notes]

(b) For the unperturbed Hamiltonian H,. What is the unperturbed energy E©) of each of the
excited states that you wrote down in part (a)?

(c) Let’s take the last term in Eq. (1) as the perturbation, i.e.,
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Note that H’ does not depend on spin explicitly. When we consider the expectation value of
H'. we can simply focus on the spatial part of the triplet and singlet states. By applying the
1st order perturbation theory with the unperturbed states as those in part (a), show that
the 1st order perturbation theory gives two different estimates

Esinglet ~ E(O) +J+ K (3)
Etriple ~ E(O) +J-K (4)

Here, J is an integral called the Coulomb integral that can be interpreted (using classical
EM) as adding up the Coulomb energy of a bit charge —elt1s (r1)|?d3r1 of one electron inter-
acting with a bit of charge —e|t15(ra)|2d®rg of another electron. From your derivation, write
down explicitly the expression for the integral J.

The is another integral K. Write down explicitly the expression for the integral K from your
derivation. This integral is called the exchange integral. Textbooks say that “the exchange
integral is a quantum effect”. Explain what this phrase really means by thinking through
where this term comes from.

(d) One can evaluate the integral K (at least numerically). The magnitude and the sign of K
are both important. For helium, it turns out that K > 0. Given that, which state (S =0
or S = 1) has the lower energy and thus become the first excited state? Find the energy
difference between the triplet and the singlet states? Hence, comment on the spin alignment
of the two electrons in the first excited state of helium.

(¢) The following statements are often made about the origin of ferromagnetism (FM)/antiferromagnetism
(AFM) (having atom’s magnetic moments aligned /anti-aligned) at low temperature. (i) AF/AFM
has their origin in Coulomb interaction between electrons (instead of coming from some mag-
netic dipole-dipole interaction as discussed in EM books), (b) it is the exchange integral that
matters. Write a few sentences to illustrate your understanding of these two statements
based on the calculations carried out in this Problem.

(f) Some students learned perturbation theory so well in the first module of PHYS3022. They saw
that the singlet and triplet excited states have the same unperturbed energy. Thus, they want
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to start with the degenerate perturbation theory as there are 4 degenerate states. Therefore,
we must have done something wrong in parts (c). Did we? We look up how to do degenerate
perturbation theory. That’s easy. Set up the 4x4 determinant for solving the eigenvalues
using the singlet and triplet states in the presence of " [Hint: The spin parts (three for S =1
and one for § = 0) are constructed in a way that they are orthogonal to each other.] Hence,
find the eigenvalues and show that the results are the same as in part (c¢). This justifies what
we did is alright!

Read me — Important remarks: (a) Here you see an example of how the symmetry re-
quirement of many-electron wavefunctions works to prefer spin-alignment (or for some cases
spin-antialignment). (b) Note that that we don’t need an external magnetic field to align
them. (c) From Egs. (3) and (4), the sign of the exchange integral K is important. It will de-
termine alignment (ferromagnetic type preference) or anti-alignment (anti-ferromagnetic type
preference) of spins. That’s fine. We do have ferromagnetic and anti-ferromagnetic materials
in reality. (d) A bit of statistical physics: Let’s understand more about ferromagnetism.
Think about the magnets that you play with, e.g. in motors or in souvenirs. Ferromagnets
are materials that have the magnetic dipole moments (come from spins) of their atoms aligned
without an applied magnetic field. Usually the temperature cannot be too high. Using the
helium atom as an example, we see that quantum physics could lead to a preferred alignment
of neighboring spins (thus neighboring spin magnetic moments). In a solid, atoms are arranged
in a lattice. Each atom has a few nearest neighbors. Could the preference of neighboring align-
ment propagate to give an overall alignment of spins in the solid? What is the condition for
this to occur? The answer to these questions is yes when the temperature is not too high. It
is because a higher temperature (higher thermal energy kT') tends to randomize the directions
of the magnetic moments and works against the alignment tendency of the exchange energy.
The exchange energy competes with thermal energy in determining the extent of alignments.



