
PHYS3022 Applied Quantum Mechanics Problem Set 2
Due Date: 30 January 2019 (Wednesday); “T+2” = 1 February 2019
All problem sets should be handed in not later than 5pm on the due date. Drop your assignments in the
PHYS3022 box outside Rm.213.
Please work out the steps of the calculations in detail. Discussions among students are highly encouraged,
yet it is expected that we do your homework independently.

2.0 Reading Assignment. We developed time-independent perturbation theories. The 1st and 2nd
order perturbation in the energy and the 1st order perturbation in the wavefunction of the non-
degenerate perturbation theory were derived. These methods will be used repeatedly in later
parts of our course. They form the standard coverage of undergraduate QM on approximation
methods. I extended the discussion to look at the perturbation results in the huge matrix viewpoint.
The discussion also illustrated that many results could be understood/obtained in terms of 2 × 2
matrices. The degenerate perturbation theory emerged as a by-product in that it amounts to
focusing on the smaller-size matrix formed by the few degenerate unperturbed (or nearly degenerate)
states and treating the matrix exactly. For references, see Chapter 6 of Griffiths’ Introduction to
Quantum Mechanics and Rae’s Quantum Mechanics Chapter 7. A very practical discussion can
be found in McQuarrie’s Quantum Chemistry Chapter 8. All of them covered almost the same
contents. Here is your turn to practice.

2.1 Tilted infinite well - Perturbation Theory

Background: In perturbation theory, we need to identify an unperturbed problem Ĥ0ψ
(0)
n =

E
(0)
n ψ

(0)
n that the energy eigenvalues {En} and eigenstates {ψ(0)

n } are known. These exactly known
quantities are then used to solve a new problem Ĥψ = Eψ approximately, where Ĥ = Ĥ0 + Ĥ ′

doesn’t allow exact solutions and Ĥ ′ is the perturbation term of the Hamiltonian.

Let’s consider the titled infinite well again. It is an infinite well with V (x) =∞ for x ≤ 0 and x ≥ a.
Inside the well 0 < x < a, the potential is tilted, with V (x) increasing linearly from V (0) = −V to
V (a) = 0.

An obvious choice of the unperturbed problem of Ĥ0 is a 1D particle-in-a-box problem with a flat
floor V (x) = 0 for 0 < x < a.

(a) Identify Ĥ ′ and apply first-order perturbation theory to find the perturbed energies En

and the perturbed wavefunctions ψn approximately. [The perturbed wavefunctions are in the
form of an infinite sum.]

(b) From the answer to (a), write down explicitly the perturbation results for the ground state

energy E1 and wavefunction ψ1. If you only include the correction term of ψ
(0)
2 into ψ1 , write

down ψ1 again. Hence, comment on the connection between the answer with only two terms
and a trial wavefunction (for variational method) that carries the same two terms. [Hint: You
may discuss in words (simpler), or carry out the variational calculation and compare results.]

(c) Apply second-order perturbation theory to find an expression for the perturbed energies
En up to second order, i.e., the final expression should include zeroth, first, and second-order
terms.

2.2 Integrals involving eigenstates of harmonic oscillator

Background: There are many important problems in physics for which the unperturbed problem
Ĥ0 is an 1D harmonic oscillator. We solved it exactly in QMI. What if Ĥ = Ĥ0 + Ĥ ′ with Ĥ ′ = βx
or Ĥ ′ = 1

6γx
3 or Ĥ ′ = 1

24bx
4? In applying perturbation theory, we need to evaluate integrals like
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〈ψ(0)
n |Ĥ ′|ψ(0)

n 〉 and 〈ψ(0)
m |Ĥ ′|ψ(0)

n 〉, where ψ
(0)
n are the energy eigenstates of harmonic oscillator. This

problem prepares you for some of these integrals.

(a) Now look at all eigenstates ψ
(0)
n (x), where n is the quantum number that labels the states and

also the energies E
(0)
n = (n + 1

2)h̄ω. Argue or show clearly that the expectation values of x

and x3 are zero for all ψ
(0)
n (x), i.e.,

xnn ≡ 〈ψ(0)
n |x|ψ(0)

n 〉 =

∫
ψ∗(0)n (x)xψ(0)

n (x)dx = 0 (1)

and a similar expression with x3 in the middle. The symbol xnn emphasizes that the entities
in Eq. (1) can be regarded as the nn-th matrix element of the operator x̂ with respect to the

basis set of harmonic oscillator states {ψ(0)
i }.

(b) The harder ones are the expectation values of x2 and x4 with respect to any ψ
(0)
n (x).

In PHYS3021 (2018-19 Term 1), we considered the recursive relation of the Hermite Polyno-
mials and used it to evaluate the integrals of x between different eigenstates

xnm ≡ 〈ψ(0)
n |x|ψ(0)

m 〉 =

∫
ψ∗(0)n (x)xψ(0)

m (x)dx (2)

for n 6= m. We found, after doing the integral,

xnm ≡ 〈ψ(0)
n |x|ψ(0)

m 〉 =

∫
ψ∗(0)n (x)xψ(0)

m (x)dx = δm,n+1

√
n+ 1

2α
+ δm,n−1

√
n

2α
, (3)

where α ≡ (mω)/h̄ and δi,j is the Kronecker delta function, i.e., it is 1 for i = j and vanishes
otherwise. In fact, Eq.(3) covers the result in Eq.(1).

It is important to note what Eq.(3) implies is that xnm is nonzero ONLY when the two states

are different by ∆n = ±1, i.e., a state n (of energy E
(0)
n ) is “connected” through the position

operator x̂ only to the nearest higher state n+ 1 (of energy E
(0)
n+1) and the nearest lower state

n− 1 (of energy E
(0)
n−1), and nothing else. Eq. (3) is important in understanding the selection

rule in vibrational spectrum.

Your task is to evaluate

x2nn ≡ 〈ψ(0)
n |x2|ψ(0)

n 〉 =

∫
ψ∗(0)n (x)x2 ψ(0)

n (x)dx (4)

Hint: It will be useful to start with some matrix thinking, i.e., taking

x2nn ≡ 〈ψ(0)
n |x2|ψ(0)

n 〉 =
∑
i

〈ψ(0)
n |x|ψ

(0)
i 〉〈ψ

(0)
i |x|ψ

(0)
n 〉 = · · · (5)

where the summation
∑

i is over all states i. Eq. (5) says that the matrix elements (x2)nn is
given by

∑
i(x)ni(x)in, which is the usual way of multiplying two matrices. Thus, x2nn is taken

to be the (nn)th (diagonal) matrix element of a matrix x2 which can be found by multiplying
two matrices each corresponding to the position operator x̂. Then use Eq. (5) and apply
Eq. (3) to get at x2nn. The same trick in Eq. (5) allows you to evaluate all the other things
like x3nm and x4nn.
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Remark: There is another way to understand what is being done in Eq. (5). Recall that for

any function Ψ(x), it can be expanded by the complete set {ψ(0)
n } as

Ψ =
∑
i

aiψ
(0)
i =

∑
i

(∫
ψ
∗(0)
i (x)Ψ(x)dx

)
ψ
(0)
i =

∑
i

〈ψ(0)
i |Ψ〉|ψ

(0)
i 〉 =

∑
i

|ψ(0)
i 〉〈ψ

(0)
i |︸ ︷︷ ︸

1̂

Ψ〉 (6)

It follows that
1̂ =

∑
i

|ψ(0)
i 〉〈ψ

(0)
i | (7)

where 1̂ is an identity operator. So in Eq. (5), we have inserted the identity operator 1̂ in
between x2, i.e., x1̂x.

2.3 Anharmonic oscillator - First order perturbation theory

Background – Harmonic oscillator carries a potential energy function U(x) ∼ x2, i.e., quadratic
in x. The answer to the question“Why do we need harmonic oscillator physics?” is that one can
do a Taylor expansion around the minimum of any form U(x) and near the minimum, U(x) has
a leading quadratic term. Nice and OK! Let’s take the Taylor expansion more seriously and keep
the cubic and quartic terms. These are the anharmonic effects. For one thing, if we only have
the ∼ x2 term, the position expectation value is always at x = 0 for all states, and there will be no
thermal expansion.

Generally, the Hamiltonian of an oscillator including anharmonic effects is given by

Ĥ = − h̄2

2m

d2

dx2
+

1

2
k x2 +

1

6
γ3 x

3 +
1

24
γ4 x

4 = Ĥ0 +
1

6
γ3 x

3 +
1

24
γ4 x

4 , (8)

where the cubic x3 term and quartic x4 term are included. The symbols γ3 and γ4 are just coeffi-
cients. The pre-factors 1/2, 1/6, and 1/24 are 1/2!, 1/3! and 1/4! in a Taylor expansion about a
minimum of U(x).

Action: Using the harmonic oscillator Ĥ0 as the known (unperturbed) problem and the rest as the
perturbation Ĥ ′, calculate the first-order correction to the ground state energy due to the
anharmonic effects. [Hint: Some integrals here are called the Gaussian integrals. Their evaluations
are easier than you think. You may look up integral tables, but cite the source.]

Extension (Optional and No bonus points): For those who like to do integrals, how about first-order
correction in energy to any state labelled by the quantum number n?

[Physics remarks: The results here are useful in that (i) anharmonic effects are always there when
we keep more terms in the Taylor expansion around a minimum, (ii) they give a better understanding
of the vibrational states (vibrational spectrum) of molecules, (iii) they give an understanding of
why a solid expands as it is heated up, and (iv) they give an understanding of thermal conduction,
i.e., what is the mechanism that heat goes from a hotter end of a system to the colder end. Items
(iii) and (iv) will be discussed in Solid State Physics. So carry the results with you to other courses.]

2.4 Potential energy of Quartic form - Perturbation Theory

Consider the Hamiltonian

Ĥ = − h̄2

2m

d2

dx2
+ ax4 , (9)

which describes a particle of mass m under the influence of a potential energy of the form ∼ x4.
Let’s say we would like to find an approximation to the ground state energy. A physical sense is
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that the ground state wavefunction will have a shape rather like that of a harmonic oscillator. In
thinking so, we are taking

Ĥ =

(
− h̄2

2m
+

1

2
kx2

)
− 1

2
kx2 + ax4 = Ĥ0 −

1

2
kx2 + ax4 . (10)

Apply first-order perturbation theory to estimate the ground state energy.

(Optional: No Bonus Point, but educational.) Use the method in Problem 2.2 to obtain the
first order correction in energy to all states. Here, you will need x4nn.

2.5 Harmonic Oscillator with a linear term - Exact solutions versus perturbation treatment

Must Try! Here is a classic QM problem that is exactly solvable and one can compare exact
results with perturbative results. The problem is to add in a linear ∼ x term into a harmonic
oscillator. The physical situation is that of a particle of mass m and charge −e under the influence
of a parabolic potential as well as a static electric field E in the x-direction. The Hamiltonian
reads

Ĥ = − h̄2

2m

d2

dx2
+

1

2
mω2x2 + e Ex , (11)

where the last term is treated as the perturbation and it comes from the electrostatic potential
energy. It is linear in x.

Let’s do it by perturbation theory

(a) For the given context, explain why do we have such a perturbative term in the Hamiltonian?

(b) For any unperturbed states ψ
(0)
n , find the first order correction to the energy.

(c) For any unperturbed states ψ
(0)
n , find the second order correction to the energy and show

that all the states are shifted by the same amount. Hence, write down the modified energy
En up to second order.

(d) (Optional for students and TAs - NO bonus points.) For those who want to do more, work
out the modified wavefunctions to first order.

Let’s do it exactly

(e) Consider x2 + ax. Once upon a time, you learned a trick called “completing the square”, i.e.,
we want to write x2 + ax into (x + b)2 + c. Show that we can always do that and express b
and c in terms of a.

(f) Consider the Hamiltonian in Eq.(11) again. Completing the square and defining a new vari-
able x′ to replace x, show that the problem represented by Ĥ in Eq. (11) is just another
harmonic oscillator problem! Hence, give the exact values of the energies of Ĥ. [Morale of
the story is: a linear plus a quadratic term in the potential is exactly solvable.]

(g) Compare your perturbation result up to 2nd order with the exact result and comment. [Hint:
You will see a happy coincidence.]

2.6 2D harmonic oscillator plus a perturbation - Degenerate perturbation theory
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Recall that in higher dimensions, degenerate states are common. Here is an example based on
harmonic oscillator. Consider a two-dimensional (2D) harmonic oscillator given by the Hamiltonian

Ĥ0 = − h̄2

2m

(
∂2

∂x2
+

∂2

∂y2

)
+

1

2
mω2(x2 + y2) . (12)

You don’t need to solve it. Just go through in your mind the standard procedure of separation
of variables and then using the results of a 1D harmonic oscillator. The eigenvalues add and the
wavefunctions multiply. [If you think you want to practice the calculations again, do it! No points
though.]

(a) The ground state energy is h̄ω and it is non-degenerate. Let’s consider the first excited states.
Show that there are two different states (different wavefunctions) corresponding to the first
excited states’ energy E(0) = 2h̄ω. Write down the two wavefunctions. [So, we have two
states that are degenerate.]

(b) Now consider the 2D oscillator problem given by the Hamiltonian

Ĥ = − h̄2

2m

(
∂2

∂x2
+

∂2

∂y2

)
+

1

2
mω2(x2 + y2) + β x y = Ĥ0 + β x y , (13)

where the last term βx y can be treated as a perturbation. Here, β is a constant parameter
that tunes the strength of the perturbation.

We want to study how the perturbation β x y affects the two degenerate unperturbed states
corresponding to E(0) = 2h̄ω. Set up the 2 × 2 matrix that is important in Ĥ when we
consider the effect of the perturbation on the two degenerate states. [Hint: See Problem 2.2
for useful integrals.]

(c) Hence, solve for the new eigenenergies and show explicitly that the perturbation term β x y
removes/lifts the degeneracy of the originally degenerate states and splits them into two states
of different energies. [Hint: 2× 2 matrices in Problem Set 1 are again useful.]

(d) (Harder) Finally, find the modified wavefunctions for the two states, in terms of the originally
degenerate states in part (a). [Hint: Find eigenvector of each eigenvalue.]
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