
PHYS3022 Applied Quantum Mechanics Problem Set 6 Due: 2 May 2020 (Saturday).
“T+2 = 4 May 2020”
To submit your homework, email your work to cuhkphys3022@gmail.com by 23:00 on the due
date. TA will send you a reply confirming receipt of your work.

Please work out the steps of the calculations in detail. Discussions among students are highly encouraged,
yet it is expected that we do your homework independently.

6.0 Reading Assignment. For atom-light interaction, we discussed (stimulated) absorption, stimu-
lated emission and spontaneous emission within the electric dipole mechanism, based on the time-
dependent perturbation theory. We focused on the results on transition probabilities (rates), se-
lection rules, the frequency must be right, Einstein’s A and B coefficients, spontaneous emission,
life time of excited states, and the ideas behind 3-level and 4-level lasers. Chapters in Modern
Physics (e.g. by Taylor, Zafiratos, Dubson; and by Harris) give the big picture and physical ideas.
The discussions in Introduction to Quantum Mechanics by Griffiths and An Introduction to Theory
and Applications of Quantum Mechanics by Yariv are more technical. The coverage in atomic
physics and transitions are sufficient to take you through serious studies on molecular and solid
state physics.

We started to discuss the Physics of Molecules. The first part introduces the general QM problem
of a molecule and the very clever Born-Oppenheimer approximation, which separates the molecular
QM problem into two parts. The electronic part takes the nuclei as fixed (in principle should try
different nuclei separations). The results include a preferred separation (bond length) and the the
electronic wavefunction provides the chemical bond, which in turn gives the spring that models a
bond about which the nuclei vibrate and rotate. The electronic part is usually handled by LCAO
(linear combination of atomic orbitals). See the chapter on molecules in Modern Physics (e.g. by
Taylor, Zafiratos, Dubson; and by Harris) for physics contents. We treated the QM in LCAO
more completely. The discussion on MO follows that in Physical Chemistry by McQuarrie and
Quantum Chemistry and Spectrocopy by Engel.

6.1 The form of |a2(t)|2 for transitions from state 1 to a group of final states

Background: In class, we obtained the following expression for the probability |a2(t)|2 of finding
an atom in state 2 given that it was initially in an initial state 1, when a z-polarized incident EM
waves, i.e., with ~E0 = E0ẑ, interact with the atom:

|a2(t)|2 = e2E2
0 |z21|2

sin2[ 1
2h̄(E2 − E1 − h̄ω)t]

(E2 − E1 − h̄ω)2

=
e2E2

0

h̄2 |z21|2
sin2[1

2(ω21 − ω)t]

(ω21 − ω)2
(1)

where ω21 = (E2−E1)/h̄ is set by the energy difference between the initial state “1” and final state
“2”. Eq. (1) works for monochromatic light of angular frequency ω polarized in the ẑ-direction
for a transition from one initial state “1” to one final state “2”. It is the starting point for
deriving several other results.

One thing we did in class notes was the case of a non-monochromatic light source with a
spread in the angular frequencies. In that case, we summed up their contributions to |a2(t)|2 and
found

|a2(t)|2 =
πe2

ε0h̄
2 |z21|2 t U(ω21) (2)
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and hence the transition probability per unit time (rate) per atom as

λ1→2 =
πe2

ε0h̄
2 |z21|2 U(ω21) (3)

where U(ω21) is the energy density of the incident energy right at the frequency ω21 defined by
(E2−E1)/h̄. In going from Eq. (1) to Eq. (2), we looked at the time-dependent function in Eq. (1)
as a function of ω for a fixed ω21 (i.e. given two states). The factor in front of U(ω21) in Eq. (3)
is related to Einstein’s B coefficient.

Your Action: Let’s start from Eq. (1) again. We consider the case of a monochromatic
incident light (single frequency) at ω with energy density U(ω). In many real systems, it so
happens that starting from an initial state “1”, the transitions can go to a group of final
states. This will be the case of many degenerate final states. This happens readily in a solid.
This is the physical scenario for you to work out here.

In this case, the time-dependent function in Eq. (1) can be regarded as a function of ω21 at fixed
ω (and time t). Make a sketch of that function as a function of ω21. The physical scenario
under consideration implies that there is a spread in ω21 among the possible final states. There
is a function called the density of state g(ω21) with g(ω21)dω21 giving the number of states
with the quantity (E2 − E1)/h̄ falling within the interval ω21 to ω21 + dω21. By summing up
the contributions from possible transitions (possible final states and many of them), derive an
expression for |a2(t)|2 and show that the answer is linear in time t. Hence, obtain an expression
for λ1→group of states and show that the answer picks up g(ω) (i.e., the number of states with

(E2−E1)/h̄ right at the incident frequency h̄ω. [Remark: The answer is another popular form of
what is called the Fermi Golden rule.]

6.2 Selection rule of transitions between harmonic oscillator states - Molecular vibrational
states

Within the electric dipole mechanism, the ~E-field in the EM waves interacts with the electric
dipole moment ~µ in the atom, giving the Ĥ ′ term. Thus,

a2(t) ∝ (~µ)fi =

∫
ψ∗final(r) ~µ ψinitial(r) d3r (4)

where we emphasized that it is the electric dipole moment matrix element that matters and
~µ is the electric dipole moment (a vector).

This expression is general. It can be applied to different forms of initial and final states. Here,
let’s consider the initial and final states being 1D harmonic oscillator states with the oscillator
centered at x = x0. Such state carries a quantum number n. Practically, we need to consider
transitions between one harmonic oscillator state ψn and another state ψn′ in molecular physics.
In an earlier Problem Set we did integrals of x and x2 between harmonic oscillator states. You
may make use of those results here without repeating the calculations.

The Physical Situation is: Let’s say there is a negatively charged ion sitting at x = 0 (fixed)
and a positively charged ion at x = x0 at equilibrium (bottom of the oscillator’s U(x)). So there
is an electric dipole moment ~µ0 = qx0x̂ at equilibrium separation. The ion will oscillate about
x = x0 and so ~µ(x) for x ≈ x0 can be written as an expansion

µ(x ≈ x0) = µ0 +
dµ

dx

∣∣∣∣
x=x0

(x− x0) (5)

The vector sign is omitted because in 1D it is understood to be along the x̂-direction.
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(a) In Eq. (4), the initial and final states for harmonic oscillator energy eigenstate ψn and ψn′ .
Substituting Eq. (5) into Eq. (4), there are two terms. Evaluate the first term due to µ0

and comment on its contribution to inducing a transition from ψn to ψn′ .

(b) Consider the contribution of the second term in Eq. (5) and obtain the selection rule
on ∆n for an allowed transition. [You may use the results of integrals involving harmonic
oscillator states in previous problem sets.]

(c) Consider the results in part (b), comment on whether a transition from ψn to ψn′ is
allowed or not if (dµ/dx)x=x0 = 0.

[Important remarks: Results in (a), (b) and (c) are important in IR spectroscopy of
molecules. They are related to the transitions between vibrational states and how to extract the
oscillator’s spring constant from molecular spectrum. Part (a) says that a molecule with a fixed
and constant electric dipole moment will not absorb in IR range (usually harmonic oscillator
states have energy difference in the infrared). Parts (b) and (c) say that the condition for possible
transitions between vibrational states due to an incident EM wave is that the molecules’ electric
dipole moment must be changing as the atoms vibrate, as quantified by (dµ/dx)x=x0

which must not be zero. Take this with you. This result can be generalized to normal modes of
all molecules, i.e., normal mode oscillations in which the electric dipole moment of the molecule
changes while the atoms are oscillating can lead to transitions between oscillator states. Since
the normal modes are usually in IR frequency range, such modes are called IR active. CO2 has
such modes and it absorbs (and then emits) IR and makes it the bad guy responsible for global
warming. H2O also has such modes. We are also fortunate that O2 and N2 (the most abundance
in the atmosphere) have (dµ/dx)x=x0 = 0 (obviously) so that they are not greenhouse gases. A
further remark is that Eq. (4) can also be applied to transitions between rotational states, where
ψinitial and ψfinal are Y`,m`

(Θ,Φ)’s and ~µ in between is a vector that can be specified by two
angles with respect to the coordinate axes.]

6.3 Ionic Bond Energetics – KBr.

Let’s practice the energetic consideration of the ionic bonds for the case of KBr.

(a) Search for the values of the ionization energy and electron affinity.

(b) Estimate the critical separation below which the transfer of an electron from a K atom to
a Br atom becomes energetically favorable. This is the separation that energy consideration
breaks even.

(c) What is the electrostatic energy (i.e. including contributions from ionization energy, electron
affinity, and Coulomb interaction between ions) at the equilibrium separation r0, where r0 is
known to be 0.282 nm (or 2.82 Å) for KBr.

(d) The experimental value of the dissociation energy (or binding energy) for KBr is about 3.97
eV. Is it different from the value obtained in (c). Explain why?

(e) Now, including schematically the strong repulsion at short distances, sketch U(r) as a func-
tion of the separation between the ions r.

(f) The repulsive part of the potential energy function can be represented quite generally as
Erepulsion = b/rn, where b and n are constants (n usually refers to some high power repre-
senting a steep repulsive part of the potential energy function). Using the known values of
the equilibrium separation and dissociation energy for KBr, estimate the value of b (units?)
and the power n. [Remark: The value of n so obtained reflects how steep the repulsive part
of U(r) is.]
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6.4 HF bonding: Closely related to SQ23 but now with numbers

Background: We discussed the bonding in H+
2 molecular ion and H2 molecule. We also discussed

the bonding in HF qualitatively. If we call the line joining the two atoms the x-direction, then the
bonding in HF is governed by how the hydrogen 1s atomic orbital (AO) and the fluorine 2px form
MO’s and filling two electrons (one from hydrogen and one from fluorine) into the MO’s. Since
hydrogen is very different from fluorine, it is typical of a diatomic molecule with the two AO’s
involved in LCAO having very different energies. You did some 2×2 matrix math before and now
let’s put it to practice use.

In considering bonding in HF, we can start with a linear combination (LCAO)

ψ = cHψH,1s + cFψF,2p ≡ cHψ1 + cFψ2 (6)

and use it as a trial wavefunction for a variational calculation. The results give a set of equations

cH(H11 − ES11) + cF (H12 − ES12) = 0 (7)

cH(H12 − ES12) + cF (H22 − ES22) = 0 (8)

and hence the values of E can be obtained by∣∣∣∣H11 − ES11 H12 − ES12

H12 − ES12 H22 − ES22

∣∣∣∣ = 0 (9)

Eq. (9) can be used to get the two values of E and Eqs. (7) and (8) can be used to find cH and
cF for each allowed value of E. So far, it is completely general (as discussed under variational
method).

Your actions start here. Let’s put in the numbers for HF. We have S11 = 1 and S22 = 1
because the AO’s are normalized. For HF, H11 = −13.6 eV and H22 = −18.6 eV. Formally,
there may be some other terms (in the formula) in Hii, but the energy of the atomic orbital
will dominate. These numbers are related to the ionization energies of hydrogen 1s electron and
fluorine 2p electron. For the other parameters, take S12 = 0.30 and H12 = −8.35 eV.

(a) Find the energies Elower and Eupper for the bonding and anti-bonding molecular orbitals.

(b) For Elower (the bonding MO), find the ratio cH/cF . Hence, using the normalization condition
of bonding MO ψlower to find cH and cF and hence find the normalized LCAO ψlower.

(c) For Eupper (the antibonding MO), do the same as in part (b) to find the normalized LCAO
ψupper.

(d) Filling in the electrons, write down formally the two-electron ground state wavefunction
for HF. Comment and connect the answer to the ionic character of the bonding.

6.5 The Hückel Molecular Orbital Theory for the π electrons in Benzene (1931) and
Delocalization Energy

We outlined the physics of the π-electron in benzene in class notes. Here, you will fill in a bit of
details. Like the hydrogen atom problem (Schrödinger 1926), the successful applications to the
physics of molecules (bonding) are among the early triumphs of quantum mechanics. Benzene
(C6H6) is the best example showing how simple QM can explain its electronic structure. It is a
planar molecule with 6 carbon atoms forming a ring. The skeleton is formed by six σ bonds in a
plane, using sp2 hybrid orbitals. This gives a hexagonal ring with nearby bonds making an angle
of 120◦. All these are quantum mechanics (LCAO basically). Here, we explore another beautiful
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QM application to benzene so as to understand the behavior of the remaining six pz electrons or
the π-electrons.

Let the plane of the benzene hexagonal framework be the x-y plane. These are strong bonds (good
overlaps between the sp2 hybrid orbitals). For each carbon atom, there is one lonely electron in the
2pz orbital, pointing out of the x-y plane. We will focus on the molecular orbitals (MO’s) formed
by these six 2pz orbitals. The problem is to study how these 6 atomic pz orbitals form
the additional bonds on top of the strong σ-bonds framework. Mulliken developed the
MO theory in 1927. Erich Hückel developed/applied the MO theory to treat the bonding of these
π electrons around 1930. His Hückel Molecular Orbital Theory is highly successful and essential
for the understanding of many organic molecules. Hückel also learned quantum mechanics from
Max Born while he was in Göttingen. He worked with Peter Debye (also in Göttingen) for his
doctoral thesis. [Born and Debye are both Nobel Laureates, one in physics and one in chemistry.]

Let’s label these 2pz atomic orbitals by φ1, φ2, φ3, φ4, φ5, φ6 in a cyclic way around the ring.
Naturally, we could study how these pz orbitals form bonds by constructing a trial wavefunction

ψ =
6∑

n=1

cnφn = c1φ1 + c2φ2 + c3φ3 + c4φ4 + c5φ5 + c6φ6. (10)

The result is a 6×6 determinant to solve for the six values of the energy and one can find the
set of coefficients for each energy and thus ψ for each energy. “Six (atomic orbitals) in and six
(MO’s) out” - no more and no less. That’s formal.

(a) To think like a physicist, we go by physical sense and we don’t care about the details
in the integrals Hij and the overlap integrals Sij . We expect the “on-site” terms Hii should
be important. We don’t care about how to integrate it out and just represent it by a symbol
α. Carbon 2 is quite far away from Carbon 4,5,6 and it is closer to only Carbon 1 and
Carbon 3. Therefore, we only include H21 and H23 and call them β. More generally, we let
Hij = β for nearest-neighboring Carbon i and Carbon j and Hij = 0 otherwise. This
is often referred to as including only the nearest-neighbor interaction – a very
useful approximation in physics. Note that β is an energy and it is usually negative.

For the overlap integral, we even take the simplest possible approximation of Sii = 1 and
Sij = 0 for i 6= j.

Write down an equation of the form of a determinant equation |6 × 6| = 0 that is to be
solved for the 6 energies of the molecular orbitals. [Remark: You have written down the 6×6
structure by physical sense. Consult class notes if necessary.]

(b) Solve the energies of the six MO’s. Try it, how to handle determinants? Don’t be scared.

(c) Make a sketch of the energies by lining them up, with the one with the lowest energy at
the bottom and the highest energy at the top. (Recall: β is usually negative.)

(d) Sketch a picture with the 6 electrons filled into the MO’s according to the Pauli Exclusion
Principle so as to attain the lowest possible energy. Hence find the total π-electronic energy
Eπ(benzene) by adding up the energies of the electrons.

(e) Once upon a time, it was thought that the benzene molecule consists of alternating double
and single bonds (there are two configurations). Sketch a picture of benzene in this form.
Now set up the 6 × 6 determinant again for this picture of a benzene molecule (simply by
physical sense). Solve for the energies of the six molecular orbitals. Fill in the electrons
and find the total π-electronic energy in this case. Again, β is usually negative.
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(f) Compare the results of part (d) and part (e). Evaluate the difference Eπ(benzene) minus
the energy in part (e). It is called the delocalization energy. You might have heard of
the term in secondary school chemistry. [For benzene, the delocalization energy, i.e., the
energy lowered (gained) by delocalizing the π electrons, is about −150 kJ mol−1

(recall this is the unit that chemists used for energies). The minus sign is there to mean that
the delocalized case has a lower energy.]

(g) HOMO and LUMO. HOMO is the short-hand for highest occupied molecular orbital
and LUMO is the short-hand for lowest unoccupied molecular orbitals. Find the
HOMO-LUMO gap. In your sketch in part (d), indicate the energy between LUMO and
HOMO.

Remark: Nowadays, many scientists study the optical properties of organic molecules, in par-
ticular related to controlling the absorption or emission of light at some preferred wavelength
and to solar energy applications. The LUMO-HOMO energy difference is an important pa-
rameter. In solids (which can be regarded as very big molecules), this LUMO-HOMO energy
difference becomes the band gap in a semiconductor or insulator.

(h) (Optional and harder - NO Bonus Points but educational) - Find the wavefunctions of the
six MO’s, i.e., solve for the six eigenvectors cn (n = 1, ..., 6) for each of the six MO energies.
This will give you a sense of how the electrons in the (filled) lower energy MO’s spread out
over the benzene and why we put a circle inside the benzene symbol.

[Remarks: (i) Now go back to parts (a) to (f) again and appreciate how simply QM considerations
and clever approximations can bring out deep physics in the molecular world. (ii) We see that
delocalizing the electrons leads to lower energy. It can be extended to a solid, in which the
delocalization of electrons leads to extended wavefunctions of electrons (called Bloch states). For
example, consider 3 square wells, 4 square wells,..., 10 square wells, etc. The benzene picture
can be seen as a way to understand the metallic bond. (iii) What you just did for benzene is
called the Hückel theory of molecular orbitals. (iv) The same approach can be applied to
other aromatic (structure of a ring) molecules. (v) Reference: E. Hückel, Zeitschrift für Physik
70, 204-286 (1931) (a classic paper on QM of benzene).]
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