
PHYS3022 Applied Quantum Mechanics Problem Set 5
Due Date: 20 April 2020 (Monday) “T+2” = 22 April 2020
To submit your homework, email your work to cuhkphys3022@gmail.com by 23:00 on the due
date. TA will send you a reply confirming receipt of your work.
Please work out the steps of the calculations in detail. Discussions among students are highly encouraged,
yet it is expected that we do your homework independently.

5.0 Reading Assignment.

Multi-electron atoms are examples of QM problems that cannot be solved analytically. Without
the electron-electron Coulomb interaction as in the hydrogen atom, the Schrödinger Equation can
be solved analytically. For multi-electron atoms, we know the Hamiltonian and the Schrödinger
Equation, only that the equation cannot be solved by paper and pencil. But quantum mechanics
is perfect alright and essential for the understanding of the physics of multi-electron atoms. There
are two levels in understanding atoms. Level 1 is the big picture (key ideas). They are covered in
standard texts such as Modern Physics (e.g. by Taylor, Zafiratos, Dubson; and by Harris) or Quan-
tum Physics (e.g. by Eisberg and Resnick). These books describes the ideas clearly. For those
who want to know more about the theory behind the independent particle approximation using the
self-consistent field (Hartree and Hartree-Fock) approximation (Level 2), see Physical Chemistry
and/or Quantum Chemistry by Donald McQuarrie. For those interested in exploring numerical
calculations on atoms (molecules and solids), you may start with the free numerical package called
Quantum Espresso available on the web. Many experimental and quantum chemistry research
groups purchased a commercial software called Guassian for QM calculations. The next question
is about filling electrons into the atomic orbitals. The key concept is that a many-electron wave-
function must be anti-symmetric with respect to interexchanging the coordinates of two particles.
This is due to the indistinguishability of the particles. The anti-symmetric wavefunction is also the
key to understanding the origin of magnetism. This ends of module of Physics of Atoms.

5.1 Writing down the ground state wavefunction of Beryllium atom

Many-electron wavefunctions must be anti-symmetric with respect to interchanging two electrons.
This requirement can be readily implemented within the independent-particle approximation. There
are single-electron states (atomic orbitals), which can be obtained by different ways (self-consistent
method say). Electrons are filled into the atomic orbitals. For two-electron systems, we illustrated
in class that the wavefunction can be expressed as a product of a spatial part and a spin part.
This factorization, however, may not be possible for other many-electron systems (more than 2
electrons).

Beryllium is the 4th element in the periodic table. It has 4 electrons. In the ground state, the
standard description is that the four electrons occupy the “1s-up”, “1s-down”, “2s-up”, and “2s-
down” states. We use φ1s↑, φ1s↓, φ2s↑, and φ2s↓ to represent these four normalized states. The key
point is that (i) we can’t tell which electron is in which state as they are indistinguishable, and
thus (ii) the four-electron ground state wavefunction must change a sign when we interchange two
particles. We use 1, 2, 3, 4 for the coordinates of the four electrons.

(a) Write down a Slater Determinant that represents a properly normalized ground state wave-
function of Beryllium.

(b) Argue or demonstrate that your answer in (a) is really anti-symmetric.

(c) If you were to put two electrons into 1s-down and leave 1s-up empty, what would happen
to the corresponding 4-electron wavefunction?
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(d) A 4 × 4 determinant looks scary, does it? The determinant can be written into a linear
combination of many terms. Look up how to write the determinant (4×4) and write the
four-electron ground state wavefunction in part (a) into many terms with each term
being a product of the four states with each electron residing in a state.

5.2 Forming two-particle states from single-particle states and looking at their behavior

This is an important problem that every CUHK student MUST do. The results will be
useful in statistical mechanics, astrophysics, cold atom physics, and solid state physics. The aim is to
get a good sense of how the spatial part of a two-particle symmetric (anti-symmetric) wavefunction
looks like. This will help you understand a lot of stuff later in your studies. Technically, you did
similar plots in the mid-term exam.

(a) Let’s warm up by considering a particle of mass m confined in a 1D infinite well of size L, e.g.
0 < x < L. [No derivation needed.] Write down the normalized energy eigenstates ψn(x) and
the corresponding energy eigenvalues En. These are the single-particle states in this problem.

(b) Forming two-particle states – distinguishable particles. Consider two distinguish-
able particles of the same mass in a 1D well. The particles are non-interacting (e.g., taking
them to be chargeless). Given that particle 1 (labelled “1” or carrying a color red) is in the
state ψm and particle 2 (labelled “2” or carrying another color blue) is in the state ψn, write
down a two-particle wavefunction ψdist(x1, x2). What is the corresponding energy eigen-
value? Find the probability that both particles are in the right hand side of the well, i.e.,
the probability that a measurement shows L/2 < x1 < L and L/2 < x2 < L?

(c) Forming two-particle states – symmetric spatial wavefunction. Similar to (b), but
now the two particles are indistinguishable (identical). Don’t worry about the spin
part of the total wavefunction for the moment and focus on the spatial part.
Write down a two-particle wavefunction ψsym(x1, x2) that is symmetric with respect to
interchanging the coordinates x1 and x2 of the two particles. Hence, find the probability
that both particles are in the right hand side of the well, i.e., the probability that a measurement
shows L/2 < x1 < L and L/2 < x2 < L?

(d) Forming two-particle states – antisymmetric spatial wavefunction. Similar to (b),
but now the two particles are indistinguishable (identical). Again, don’t worry about the spin
part of the total wavefunction for the moment and focus on the spatial part. Write down a
two-particle wavefunction ψanti(x1, x2) that is anti-symmetric with respect to interchanging
the coordinates x1 and x2 of the two particles. Hence, find the probability that both
particles are in the right hand side of the well, i.e., the probability that a measurement shows
L/2 < x1 < L and L/2 < x2 < L?

(e) Looking at your results – Compare your results in parts (b), (c), and (d) and com-
ment? Which symmetry has an enhanced probability (relative to the case of distinguishable
particles) of finding the two (non-interacting) particles in the same side? Which symmetry
has a reduced probability of finding the two particles on the same side?

[Read me: Let’s take a break. Recall that the system we are considering is that of two
non-interacting particles in a 1D well. Although the particles do NOT interact with each
other, yet the symmetry of the spatial wavefunction alone has an effect that seems
to pull the particles closer OR to push the particles farther apart. It looks as if the
“exchange symmetry requirement” leads to an “effective force” between the particles (either
attraction or repulsion). This is called the exchange force and it plays a fundamental role
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in many phenomena, e.g., the origin of magnetism when we include spin wavefunction into
consideration. It is also the reason why bosons and fermions behave so differently.]

5.3 Pictorial version of Problem 5.2

The context is the same as that in Problem 5.2. Here, you need to use a tool to make 3D plots.

(a) MUST TRY! A picture is worth a thousand words Let’s say one particle is in the
single-particle ground state m = 1 (thus ψ1) and another in the 1st excited state n = 2 (thus
ψ2). Plot ψdist(x1, x2), ψsym(x1, x2), and ψanti(x1, x2) as a function of x1 and x2 for the
range 0 < x1 < L and 0 < x2 < L. Note that these are 3D plots, as one axis being x1, another
being x2 and the third axis is the quantity you want to plot (ψdist(x1, x2) here).

(b) Plot |ψdist(x1, x2)|2, |ψsym(x1, x2)|2, and |ψanti(x1, x2)|2 as a function of x1 and x2 for the
range 0 < x1 < L and 0 < x2 < L.

Important: Look at the plots carefully and comment on the difference between |ψsym(x1, x2)|2
and |ψanti(x1, x2)|2. In particular, comment on the difference between the two cases when
the two particles are at the same place, i.e, when x1 = x2 (which is a diagonal line in the x1-x2
plane).

(c) Identical Bosons. Let’s consider the ground state of the two identical non-interacting bosons
in a 1D well. (These bosons have zero spin (quantum number s = 0), say, and they don’t obey
the Pauli exclusion principle.) Construct the ground state wavefunction.

(d) Identical Fermions - Ground State. Construct the ground state (total) wavefunction
for two non-interacting identical spin-1/2 particles (thus fermions) in a 1D well (include the
spin part of the wavefunction in your answer). For example, you may use α and β to denote
the spin-up (h̄/2) and spin-down (−h̄/2) states, respectively.

(e) Identical Fermions - Excited States. An excited state of the system in (d) is that one
particle is in ψ1 and the other in ψ2. Construct all the possible total wavefunctions that
satisfy the antisymmetric requirement. Identify the spin singlet S = 0 state and the spin
triplet S = 1 states.

Finally, let’s say there is actually a repulsive (e.g. Coulomb) interaction between the two
fermions, would the S = 0 state or S = 1 states have a lower energy? Don’t try to do any
calculation, but explain your answer using the plots you did in the earlier parts.

5.4 Helium Atom - Excited States (1st order perturbation theory)

This is another must try/do problem as it carries much physics. The class notes outlined the
physics. You will explore the details here. The aim here is to take you to go over the steps so that
you can see by yourself how different terms emerge.

The helium atom Hamiltonian is given by

Ĥhelium = − h̄2

2m
∇2

1 −
2e2

4πε0r1
− h̄2

2m
∇2

2 −
2e2

4πε0r2
+

e2

4πε0r12︸ ︷︷ ︸
troublesome term

, (1)

where r12 = |r1 − r2|. The first four terms can be taken as the unperturbed Hamiltonian Ĥ0. The
last electron-electron interaction term can be treated as the perturbation term Ĥ ′. Here, you will
“work out” the excited states energies (without doing the integrals explicitly).
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For the unperturbed Hamiltonian Ĥ0 (first four terms in Eq. (1)), it is two hydrogen-like problems.
The point is that the coordinates ~r1 and ~r2 are separable. Thus, Ĥ0 can be solved analytically. We
now explore the lowest excited states of two electrons. Low-energy excited states can be visualized
as having one electron in 1s with wavefunction φ1s and another electron in 2s with wavefunction
φ2s. [You don’t need the explicit forms of φ1s and φ2s here, although they are known.] But the
two electrons are indistinguishable. Let α and β denote the states of spin-up (ms = 1/2) and
spin-down (ms = −1/2) of an electron, respectively.

(a) For the excited states, write down the possible normalized two-electron states and classify
them into those corresponding to S = 1 (triplet states) and S = 0 (singlet state). [Hint: You
did this in Problem 5.3 for two particles in a box.]

(b) For the unperturbed Hamiltonian Ĥ0. What is the unperturbed energy E(0) of each of the
excited states that you wrote down in part (a)?

(c) Let’s take the last term in Eq. (1) as the perturbation, i.e.,

Ĥ ′ =
e2

4πε0r12
(2)

Note that Ĥ ′ does not depend on spin explicitly. [Students: See part (f) for what this implies
in terms of a more serious treatment of evaluating all Hij of the full Hamiltonian using the
unperturbed states.] When we consider the expectation value of Ĥ ′, we can simply focus on
the spatial part of the triplet and singlet states. By applying the 1st order perturbation theory
with the unperturbed states (singlet and triplet states) as those in part (a), show that the
1st order perturbation theory gives two different estimates

Esinglet ≈ E(0) + J +K (3)

Etriple ≈ E(0) + J −K (4)

Here, J is an integral called the Coulomb integral that can be interpreted (using classical
EM) as adding up the Coulomb energy of a bit of charge −e|ψ1s(r1)|2d3r1 of one electron
interacting with a bit of charge −e|ψ2s(r2)|2d3r2 of another electron. From your derivation,
write down explicitly the expression for the integral J . [Remark: Formally the integral
can be labelled by J1s,2s.

The is another integral K. Write down explicitly the expression for the integral K
from your derivation. This integral is called the exchange integral. Textbooks say that
“the exchange integral is a quantum effect”. Explain what this phrase really means by
thinking through where this term comes from. [Remark: Formally the integral can be labelled
by K1s,2s.]

(d) One can evaluate the integral K (at least numerically). The magnitude and the sign of K
are both important. For helium, it turns out that K > 0. Given that, which state (S = 0
or S = 1) has the lower energy and thus become the first excited state? Find the energy
difference between the triplet and the singlet states? Hence, comment on the spin alignment
of the two electrons in the first excited state of helium.

(e) You just did something profound. The key concept is that the Coulomb interaction
(see Eq. (2)) is responsible for the difference in energy between the triplet and the singlet
spin states. In other words, it is the Coulomb interaction (between charges) that select the
preferences of two spins being aligned or anti-aligned. This point must be firmly taken when
you get into other courses (magnetic properties of solids in solid state physics).
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It is tempting to think that classical electromagnetism can be used to explain the preference
of alignment of magnetic dipole moments. Let’s say there are two magnetic dipole moment,
each with magnitude of the Bohr magneton µB and they are separated by standard atomic
separation, say, 2 to 3 Å. For the dipole-dipole interaction, a rough estimation of the inter-

acting energy is E ∼ µ0
4π

µ2B
r3

, where the 1/r3 represents the short-range nature of dipole-dipole
interaction. Plug in numbers to obtain the interaction energy in eV . Hence, turn the
energy into a temperature.

Using the fact that Iron, Cobalt, and Nickel are magnetic at temperatures up to 1043 K, 1404
K, and 631 K, respectively, discuss the validity of using the dipole-dipole interaction as the
mechanism for magnetism in solids.

(f) Some students learned perturbation theory well in PHYS3022. They saw that the singlet and
triplet excited states have the same unperturbed energy. Thus, they want to start with the
degenerate perturbation theory as there are 4 degenerate states. Therefore, we must have done
something wrong in parts (c). Did we? Let’s do degenerate perturbation theory. Set up the
4×4 determinant for solving the eigenvalues using the singlet and triplet states in the presence
of Ĥ ′. [Hint: The spin parts (three for S = 1 and one for S = 0) are constructed in a way that
they are orthogonal to each other.] Hence, find the eigenvalues and show that the results are
the same as in part (c). This justifies what we did is alright! [Hint: The comment in part (c)
about Ĥ ′ is spin-independent becomes important here.]

Read me – Important remarks: (a) Here you see an example of how the symmetry re-
quirement of many-electron wavefunctions works to prefer spin-alignment (or for some cases
spin-antialignment). (b) Note that that we don’t need an external magnetic field to align
them. (c) From Eqs. (3) and (4), the sign of the exchange integral K is important. It will de-
termine alignment (ferromagnetic type preference) or anti-alignment (anti-ferromagnetic type
preference) of spins. That’s fine. We do have ferromagnetic and anti-ferromagnetic materials
in reality. (d) Here, we only worked on two spins. In a solid, atoms are arranged in a lattice.
Each atom has a few nearest neighbors. There are many electrons and many spins. Could
the preference of neighboring alignment propagate to give an overall alignment of spins in the
solid? What is the condition for this to occur? The answer to these questions is yes when
the temperature is not too high. It is because a higher temperature (higher thermal energy
kT ) tends to randomize the directions of the magnetic moments and works against the align-
ment tendency of the exchange energy. The exchange energy competes with thermal energy
in determining the extent of alignments.
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