
PHYS3022 Applied Quantum Mechanics Problem Set 4
Due Date: 17 March 2020 (Tuesday) “T+2” = 19 March 2020

Submission: To submit your homework, email your work to cuhkphys3022@gmail.com by 23:00
on the due date. TA will send you a reply confirming receipt of your work.
Please work out the steps of the calculations in detail. Discussions among students are highly encouraged,
yet it is expected that we do your homework independently.

Assessment Scheme – As face-to-face classes cannot resume by 10 March 2020, the alterna-
tive Assessment Scheme becomes effective. The Scheme is: Problem Sets (30%), Mid-Term
Exam (30%), Final Exam (40%)

4.0 Reading Assignment. We developed the 1st and 2nd order non-degenerate perturbation theory
and degenerate perturbation theory. The results were interpreted using matrix mathematics. We
also developed degenerate perturbation theory as a by-product. Here, you will do some exercises
on perturbation theory, using harmonic oscillator plus perturbation terms as the context. For
reading into approximation methods, see chapters in Griffiths’ Introduction to Quantum Mechanics
and Rae’s Quantum Mechanics. A more practical discussion can be found in McQuarrie’s Quantum
Chemistry. Liboff’s Introductory Quantum Mechanics also has a good chapter. They covered almost
the same contents.

We started the module on the Physics of Atoms. We covered/will cover orbital and spin angular
momenta, total angular momentum, spin-orbit interaction, relativistic correction (see SQ in Week
6), fine structure, Zeeman effect, and hyperfine structure, using the hydrogen atom as the focus of
our discussion. There are two levels of understanding. Level 1 is the big picture (key ideas). They
are covered in standard textbooks on Modern Physics (e.g. by Taylor, Zafiratos, Dubson; and by
Harris) or Quantum Physics (e.g. by Eisberg and Resnick). These books describe the physics
clearly. For applying QM mathematical and approximation methods to these topics (Level 2), see
the references in the last paragraph. But I stress that these QM treatments should be seasoned
by the physics discussions. For a more focused and serious study of Atomic Physics, see Mark
Fox, A student’s Guide to Atomic Physics (Cambridge Univ. Press) and C.J. Foot, Atomic Physics
(Oxford Univ. Press). The latter is a textbook that takes you to the beginning graduate level.

Here, you will practice perturbation theories with Ĥ0 being an harmonic oscillator.
You may want to read the class notes on harmonic oscillator in PHYS3021 (QM I)
and related Problem Sets last term for a review. Problem 2.1 fills in some background
and takes you through the calculations of some matrix elements between harmonic
oscillator eigenstates. The results are then used in the other problems.

4.1 Oscillator physics is important and Integrals involving eigenstates of harmonic oscilla-
tor

Background: Let Ĥ0 be an 1D harmonic oscillator. It is exactly solvable. It is often said that most
physics is harmonic oscillator physics. This refers to the fact that when many particles interact and
they find their equilibrium positions (e.g. atoms in a molecule or in a solid), the potential energy
function in the vicinity of the equilibrium position behaves like a harmonic oscillator. Further away
from the equilibrium position, the form is like a harmonic oscillator plus some correction terms.
These correction terms can be treated as perturbations.

(a) Let V (x) be a potential energy function that has a minimum at x = 0 and V (0) = 0. Using
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Taylor expansion, show that V (x) around x = 0 takes on the form

V (x) ≈ 1

2
k x2 +

1

6
γ x3 +

1

24
b x4 (1)

and find the relations between V (x) and the coefficients k, γ, and b.

[Remark: Ignoring the ∼ x3 and ∼ x4 terms reduces the problem to the exactly solvable
harmonic oscillator. What about including a linear ∼ x term? See Problem 4.3.]

(b) (1st order perturbation theory for ground state.) We are, therefore, motivated to
consider the Hamiltonian of a 1D anharmonic oscillator of the form

Ĥ =

(
− h̄2

2m

d2

dx2
+

1

2
k x2

)
+

1

6
γ x3 +

1

24
b x4 = Ĥ0 +

1

6
γ x3 +

1

24
b x4 (2)

Let’s find the first order perturbation theory for the ground state energy. Let ψ
(0)
0

be the ground state wavefunction of an harmonic oscillator Ĥ0. Evaluate (or argue at an
answer) the expectation values of x3, and x4 for the harmonic oscillator ground state

ψ
(0)
0 . Hence, give the anharmonic oscillator ground state energy using first order perturbation

theory.

[Hint: You did the x4 integral in Problem 3.2 in a variational calculation. You may look up
the integrals there or from Tables or websites (cite the source).]

(c) As a by-product, evaluate (or argue at an answer) the expectation values of x and x2 with

respect to ψ
(0)
0 .

[Hint: You did the x2 integral in Problem 3.1 in a variational calculation.]

(d) Going beyond the ground state, argue clearly that the expectation values of x and x3 are

zero for all harmonic oscillator states ψ
(0)
n .

(e) This leads us to consider the expectation values 〈ψ(0)
n |x2|ψ(0)

n 〉 and 〈ψ(0)
n |x4|ψ(0)

n 〉 for any un-

perturbed states ψ
(0)
n . More generally, when you do perturbation theory, we need the matrix

elements 〈ψ(0)
n |xk|ψ(0)

m 〉 for k = 1, 2, 3, and 4 between eigenstates labelled n and m.

In PHYS3021, we did the matrix element 〈ψ(0)
n |x|ψ(0)

m 〉 based on the recursive relation of the

Hermite Polynomials, which are part of ψ
(0)
n . The result for the matrix element xnm is

xnm ≡ 〈ψ(0)
n |x|ψ(0)

m 〉 =

∫
ψ∗(0)n (x)xψ(0)

m (x)dx = δm,n+1

√
n+ 1

2α
+ δm,n−1

√
n

2α
, (3)

δi,j is the Kronecker delta function, i.e., it is 1 for i = j and vanishes otherwise. Here

α ≡ mω

h̄
(4)

and ω =
√
k/m. [You are NOT asked to verify Eq.(3).] We take Eq. (3) as given and it

is important to note that Eq. (3) says that xnm is nonzero ONLY between two neighboring

unperturbed energy eigenstates, i.e., a state n (of energy E
(0)
n ) is connected through x only to

the nearest higher state n + 1 (of energy E
(0)
n+1) and the nearest lower state n − 1 (of energy

E
(0)
n−1), and nothing else. This is the most important information of Eq.(3). [Remark: This is

related to some selection rule in transitions in molecules.]

2



Action: Apply Eq.(3) to evaluate

x2nn ≡ 〈ψ(0)
n |x2|ψ(0)

n 〉 =

∫
ψ∗(0)n (x)x2 ψ(0)

n (x)dx (5)

Hint: The set {ψ(0)
n } is complete. The mathematical way to say this is

1̂ =
∑
i

|ψ(0)
i 〉〈ψ

(0)
i | , (6)

where 1̂ is an identity operator. That Eq. (6) is correct can be seen by operating on both sides
an arbitrary function |ψ〉. We have

|ψ〉 =
∑
i

|ψ(0)
i 〉〈ψ

(0)
i |ψ〉 , (7)

which is a fancy way of writing the expansion of ψ(x) in terms of the orthonormal basis set

{ψ(0)
n } of functions, i.e.,

ψ(x) =
∑
i

ciψ
(0)
i =

∑
i

(∫
ψ
(0)∗
i ψ(x)dx

)
ψ
(0)
i (8)

after solving for ci.

Now we use Eq. (6) to help us evaluate x2nn. We start with

x2nn ≡ 〈ψ(0)
n |x2|ψ(0)

n 〉 = 〈ψ(0)
n |x 1̂x|ψ(0)

n 〉 =
∑
i

〈ψ(0)
n |x|ψ

(0)
i 〉〈ψ

(0)
i |x|ψ

(0)
n 〉 = · · · (9)

where the summation
∑

i is over all states i. First understand for yourself that we have
taken x2nn as the (nn)th (diagonal) matrix element of a matrix x2 and it in turn is found by
multiplying two matrices each corresponding to the position operator x̂. Hence, use Eq. (9)
and apply Eq. (3) to obtain x2nn.

[Remark: The same trick in Eq. (9) allows you to evaluate all the other things like x2nm, x3nm
and x4nn.]

4.2 Anharmonic oscillator with a quartic term as perturbation

Consider an anharmonic oscillator with the Hamiltonian

Ĥ =

(
− h̄2

2m

d2

dx2
+

1

2
kx2

)
+

1

24
bx4 = Ĥ0 + Ĥ ′ , (10)

where the quartic term is taken to be the perturbation.

(a) Consider any unperturbed states ψ
(0)
n of Ĥ0, evaluate the modified energy to first-

order due to the quartic terms Ĥ ′. [Hint: Here you need x4nn and the approach/result in
Problem 4.1 is useful. The answer has a nice and simple closed form.]

(b) This part is quiet hard – Consider the ground state. Find the leading correction term,
i.e., one term that is the most important, to the ground state wavefunction due to the
quartic perturbative term.
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4.3 Harmonic Oscillator with a linear term - Exact solutions versus perturbative treatment

Background: Here is a classic QM problem that all CUHK students are asked to try. It can be
solved exactly. Therefore, one can compare the perturbative results with the exact results. The
problem is adding a linear ∼x term to a harmonic oscillator. The physical situation is that of a
particle of mass m and charge −e under the influence of a parabolic potential as well as a static
electric field E in the x-direction.

The Hamiltonian reads

Ĥ = − h̄2

2m

d2

dx2
+

1

2
mω2x2 + e Ex , (11)

where the last term can be treated as the perturbation.

Let’s do it by perturbation theory

(a) Explain the physics behind the perturbative term in the Hamiltonian based on how a
charged particle at position x and an electric field interact (EM theory).

(b) For any unperturbed states ψ
(0)
n , find the first order correction to the energy. [Hint:

See Problem 4.1]

(c) For any unperturbed states ψ
(0)
n , find the second order correction to the energy and

show that the energies are shifted by the same amount for all states. Hence, write down the
modified energy En of any state n up to second order. [Eq. (3) may be useful.]

(d) (Optional for students and TAs - NO bonus points.) For those who want to practice more,
work out the modified wavefunctions to first order.

Let’s do it exactly

(e) Consider x2 + ax. Once upon a time, you learned a trick called “completing the square”, i.e.,
we want to write x2 + ax into (x+ b)2 + c. Do that and express b and c in terms of a.

(f) Consider the Hamiltonian in Eq.(11). Completing the square and replacing x by a new variable
x′, show that the problem represented by Ĥ in Eq. (11) is nothing but another harmonic
oscillator problem! Hence, give the exact values of the energies of Ĥ.

[Moral of the story is: a linear plus a quadratic term in the potential is exactly solvable.]

(g) Hence, compare your perturbation result up to 2nd order with the exact result. [Hint: You
will see a happy coincidence.]

4.4 Ĥ0 is a 2D harmonic oscillator - Degenerate perturbation theory

Degenerate states are common in higher dimensional QM problems. Here is an example based on
harmonic oscillators. Consider a two-dimensional (2D) harmonic oscillator given by the Hamiltonian

Ĥ0 = − h̄2

2m

(
∂2

∂x2
+

∂2

∂y2

)
+

1

2
mω2(x2 + y2) . (12)

You don’t need to solve it. You are more skillful than that. Just go through in your mind the
standard procedure of separation of variables and then using the results of a 1D harmonic
oscillator. The eigenvalues add and the wavefunctions multiply.

(a) The ground state energy is h̄ω. Write down the 2D ground state wavefunction.
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(b) Consider the first excited states. Show that the corresponding energy is E(0) = 2h̄ω and
write down the two corresponding wavefunctions. So, these two states are degenerate and
the energy 2h̄ω has a degeneracy of 2.

(c) Now consider the perturbed 2D oscillator problem given by the Hamiltonian

Ĥ = − h̄2

2m

(
∂2

∂x2
+

∂2

∂y2

)
+

1

2
mω2(x2 + y2) + γ x y = Ĥ0 + γ x y , (13)

where the last term γ x y can be treated as a perturbation. Here, γ is a parameter representing
the strength of the perturbation.

The question is to investigate the effect of the perturbation γ x y on the two degenerate unper-
turbed states corresponding to E(0) = 2h̄ω. Applying the degenerate perturbation theory,
set up the 2 × 2 matrix for Ĥ with respect to the two unperturbed degenerate states. [You
have worked out the integrals earlier.]

(d) Hence, solve for the new eigen-energies and show explicitly that the perturbation term
γ x y removes the degeneracy of the originally degenerate states and splits them into two states
of different energies. Make a sketch showing the two new energies as a function of γ. [Hint:
Here, you are using the 2×2 matrix math in Problem Set 3.]

(e) Find the two new wavefunctions corresponding to the two eigen-energies, in terms of the
originally degenerate states in part (b). [Hint: 2×2 matrix math again. You will see them
mixed strongly.]

Intermission: Read through Problems 4.1 to 4.4 again. They cover oscillator physics,
evaluations of matrix elements, and perturbation theories.

Physics of Atoms

4.5 Normal Zeeman Effect (See SQ15)

Consider transitions from an upper d-states (` = 2) to a lower f-states (` = 3). When an external
magnetic field Bext = Bextẑ is applied, the degeneracy behind the quantum number m` is removed.
Sketch a diagram showing how the d-states and f-states split in the presence of Bext. Hence, by
applying the selection rule that ∆m` = 0,±1, indicate the allowed transitions from d states to
f states in the sketch and find the relations between the frequencies involved in the transitions
with the frequency when Bext = 0.

4.6 The rule of adding two angular momenta gives the right number of states. (See SQ16)

Consider two angular momenta with one characterized by the quantum number j1 = 3 and the
other by j2 = 1. Using (j1,mj1 , j2,mj2), count all the states given by the system of two angular
momenta.

We can add the two angular momenta into a total angular momentum. The total angular momentum
is characterized by the quantum number j. Applying the rule of getting the values of j, label and
count all the states using (j1, j2, j,mj).
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