
PHYS3022 Applied Quantum Mechanics Problem Set 3
Due: 3 March 2020 (Tuesday); “T+2” = 5 March 2020 (Thursday) (20% discount)
Note special arrangement for handing in Problem Set 3. To submit your homework, email
your work to cuhkphys3022@gmail.com by 23:00 on the due date. TA will send you a reply
confirming receipt of your work.
Please work out the steps of the calculations in detail. Discussions among students are highly encouraged,
yet it is expected that we do your homework independently.

3.0 Reading Assignment. It is a guide to supplementary reading. No need to hand in anything.
We began the discussion on several approximation methods, as most real problems in QM cannot
be solved analytically. The topics are covered in standard QM textbooks, such as Griffiths’
Introduction to Quantum Mechanics and Rae’s Quantum Mechanics. Softer (less math) discussions
in books either on Modern Physics or Quantum Physics, e.g. Modern Physics for Scientists and
Engineers by Taylor, Zafiratos, and Dubson, and Modern Physics by Randy Harris are also useful.
The treatment in our course combines mathematics and physical sense.

In Week 4, we re-wrote TISE into a huge matrix problem. It is an exact approach. We will
refer to the exact matrix formulation many times. The variational method, which is based on
an one-sided guessing theorem, was then introduced. A particularly useful application is to use
trial wavefunctions in the form of a linear combination of several functions. We showed that the
variational method gives a matrix problem. The matrix elements are similar to the exact approach,
only that the matrix is of smaller size. Thus, the variational method provides the conceptual back-
up for truncating the exact big matrix. This Problem Set is about the Variational Method.
In Week 5, we will develop the time-independent non-degenerate perturbation theory up to second
order and the degenerate perturbation theory. They can also be understood in terms of making
approximations on the huge matrix. Griffiths and Rae’s books are both good on these topics. They
presented the derivations (of the same results) slightly differently. It is interesting to see how two
excellent authors look at a problem differently. The discussion so far points to the importance
of matrix mathematics (a bit of it) in QM. Here, you will have the chance to re-do simple
matrix math.

3.1 Harmonic Oscillator - Insightful trial wavefunction could give excellent result

Consider the one-dimensional harmonic oscillator problem with the Hamiltonian

Ĥ = − h̄2

2m

d2

dx2
+

1

2
mω2x2 . (1)

We solved this problem exactly. Let’s pretend that we don’t know the answer.

Our task is to estimate the ground state energy using the variational method. Let’s use a trial
wavefunction of the form

φ(x) = Ae−λx
2

(2)

with λ being the variational parameter. Here, A is a normalization factor. Apply the variational
method to estimate the ground state energy of the Hamiltonian in Eq. (1). Compare your
result with the exact ground state energy and comment on the reason behind the accuracy.

3.2 Quartic potential energy function - Variational Method

[Hint: You just did some Gaussian integrals in Problem 3.1. Some of them are useful here. But
there is one more Gaussian integral to do in this problem. You may work it by yourself or look it
up from websites or tables (if you know what integral tables are).]
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Consider a one-dimensional Hamiltonian in which the potential energy function is quartic in x,
i.e.,

Ĥ = T̂ + Û = − h̄2

2m

d2

dx2
+ ax4 , (3)

which describes a particle of mass m under the influence of a potential energy of the form ∼ x4.
Solving TISE is hard.

Let’s take on the humble task of estimating the ground state energy based on the variational
method. Proposing a trial wavefunction is an art and a science. The problem has U(x) ∼ x4,
which is symmetric about x = 0, i.e., U(x) = U(−x). We expect the ground state wavefunction to
be symmetric about x = 0 and there is no node. Following this physical sense and our knowledge
on the harmonic oscillator, let’s use again a trial wavefunction of the form

φ(x) = Ae−λx
2

(4)

with λ being the variational parameter. Apply the variational method to estimate the
ground state energy of the Hamiltonian in Eq. (3).

3.3 Harmonic oscillator with additional quartic term - Variational Method with trial
wavefunction of linear combination form

Consider the Hamiltonian given by

Ĥ =

[
− h̄2

2m

d2

dx2
+

1

2
mω2x2

]
+ ax4 = Ĥ0 + Ĥ ′ , (5)

which is a harmonic oscillator characterized by Ĥ0 with an additional quartic term Ĥ ′. We want
to set up a variational calculation. If there is Ĥ0 alone, we know the solutions. They are φn(x)

for the normalized energy eigenfunctions with the corresponding E
(0)
n = (n + 1

2)h̄ω. Here,

the superscript (0) emphasizes that these energies are those of Ĥ0.

Let’s use the trial wavefunction

φ(x) = c0 φ0(x) + c2 φ2(x) (6)

with c0 and c2 being the variational parameters.

We discussed in class that such a linear combination form will lead to a 2× 2 matrix problem of
the form (

H11 − E S11 H12 − E S12
H21 − E S21 H22 − E S22

)(
c1
c2

)
= 0 (7)

(a) Demonstrate that for the trial wavefunction φ(x) in Eq. (6), Eq. (7) can be simplified to(
E

(0)
0 +H ′00 − E H ′02

H ′20 E
(0)
2 +H ′22 − E

)(
c1
c2

)
= 0 (8)

where E
(0)
0 = h̄ω/2 and E

(0)
2 = 5h̄ω/2. Here, H ′ij are hard-to-do integrals. Write down the

form of the integrals H ′ij (don’t need to do the integral).

Hence, using the condition for non-trivial solutions, solve for E and obtain an expression
for the estimated ground state energy of Ĥ.
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(b) Explain why the following trial wavefunction

φ(x) = c0 φ0(x) + c1 φ1(x) (9)

is a bad choice for this problem.

3.4 2 × 2 matrices carry much physics and matrices ain’t frightening. Street-fighting
matrix math. (Must try)

Background: From the general form Eq. (7) for a trial wavefunction of the form φ = c1φ1+c2φ2,
we can solve for E by setting the determinant of the 2 × 2 matrix to zero. This can be done
exactly as it is just a quadratic equation of E. In Problem 3.3, we saw that if the two functions in
the linear combinations are normalized and orthogonal to each other, the matrix problem becomes:(

H11 − E H12

H21 H22 − E

)(
c1
c2

)
= 0 (10)

In QM, we often encounter Eq. (10) or we make approximations so that Eq. (10) is what we want
to deal with. Note that H12 = H∗21 as the Hamiltonian is a Hermitian operator. [Remark: You
solved it exactly in Problem 3.3.]

Therefore, we must acquire some mathematical sense about 2×2 matrix and its eigenvalue problem
(as in Eq. (10)). This problem serves to illustrate that 2 × 2 stuffs are easy, and there is useful
approximation with a clear physical picture although one can solve the problem exactly.

Inspecting Eq. (10), it is an eigenvalue problem of a 2× 2 matrix defined by Hij , with i, j = 1, 2.
This leads us to consider a 2× 2 matrix of the form(

EA ∆
∆ EB

)
(11)

where we simply take ∆ to be a real number. [You may take one of them to be ∆∗ if you like.]
The corresponding eigenvalue problem is(

EA − E ∆
∆ EB − E

)(
c1
c2

)
= 0 (12)

(a) Easiest case! When ∆ = 0, what are the eigenvalues and the corresponding eigenvec-
tors.

(b) Second easiest case. Now ∆ 6= 0. Consider the special case of EA = EB = E0. Find the
eigenvalues. For each eigenvalue, find the corresponding normalized eigenvector.

[Physics Remarks: This simple case is very important. For ∆ = 0, the two eigenvales
are equal. We have two degenerate states (1, 0)T representing φ1 and (0, 1)T representing φ2.
For ∆ 6= 0, you see the eigenvalues shift away from each other: one eigenvalue (energy in
QM) goes down and another eigenvalue (energy) goes up. Carry this result with you. In
classical physics, this is related to the coupling of two oscillators with identical fundamental
frequency. In QM, it is related to the theory called LCAO (Linear Combinations of Atomic
Orbitals) for bonding in diatomic molecules formed by two identical atoms. One result gives
a bonding orbital (lower eigenvalue/energy) and the other an anti-bonding orbital (higher
eigenvalue). You heard of them in CHEM1070.]

(c) Consider the general case of EA 6= EB. We assume EA < EB without loss of generality.
Let’s call the eigenvalues E1 and E2. Find the eigenvalues by solving a quadratic equation
exactly. [You may copy results from Problem 3.3.] For E1 and E2, find the corresponding
eigenvectors. [Here, you solved the 2× 2 eigenvalue problem exactly.]
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(d) Very important, poor person’s perturbation theory, must do! Let’s assume that
|∆| � |EB − EA|. The physical meaning is that EA and EB are well separated and ∆
is much smaller than the separation. Then there is a small parameter in the problem.
Starting with the exact expressions for the two eigenvalues in part (c), expand the square
root (something like (1 + x)1/2 for small x) and find approximate expressions for the
two eigenvalues E1 and E2. Identify E1 as the eigenvalue that is closer to EA and E2 the
one closer to EB.

Hence, make a sketch to illustrate the following physical picture that emerges from
the math: (i) the lower eigenvalue EA is altered by an amount ∆2/(EA − EB) and thus it
is “pushed down”; (ii) the higher eigenvalue EB is altered by an amount ∆2/(EB − EA)
and thus it is “pushed up”; and both shifts are due to the small coupling ∆ (recall that
|∆| � |EB − EA| is assumed) between the two states of eigenvalues EA and EB.

[Take-home picture/slogan: Higher state is pushed up and lower state is pushed down,
and take the approximated eigenvalue expressions with you. The coupling ∆ “pushes” the
two energies, originally well separated, further apart. This is street-fighting matrix math.]

(e) If all these are too abstract, find the eigenvalues of(
8 ∆
∆ 3

)
(13)

for ∆ = 1 and ∆ = 0.1. For each case, compare the exact eigenvalues with approximated
values using the formulas in part (d).

3.5 Atomic polarizability of a hydrogen atom - Quantum Mechanics in action

Background: A hydrogen atom in ground state (1s) has the nucleus (proton) and the center of
mass of the electron probability distribution |ψ1s(r)|2 overlapped. (Recall that 1s is like a sphere
centered at the origin (nucleus).) Therefore, there is no electric dipole moment. When a static
electric field ~E = E ẑ is applied to a hydrogen atom, the nucleus and the electron cloud will
be shifted slightly in opposite directions along the z-direction, leading to an induced electric
dipole moment ~µ = α~E , where α is the atomic polarizability of the hydrogen atom. This
is discussed in Griffiths’ Introduction to Electrodynamics (Chapter 4 in the 3rd edition). Griffiths
even gave a number of α/(4πε0) = 0.667×10−30 m3 for hydrogen. Note that the smallness 10−30 is
actually related to a factor a30, where a0 is the Bohr radius. Classical electromagnetism then uses
α to obtain the electric susceptibility χe and then the permittivity ε. But the origin of the atomic
polarizability is quantum mechanical in nature. Here, we will calculate α using the variational
method.

The situation is similar to that of Eq. (5), with a solvable part Ĥ0 plus a term due to the electric
field. Let Ĥ0 be the hydrogen atom Hamiltonian. We solved it analytically. We know that
the ground state wavefunction is ψ1s and the energy E1s = −e2/(2κ0a0) = −13.6 eV , where
κ0 = 4πε0. We also know an excited state called 2pz state with wavefunction ψ2pz and energy
E2 = −e2/(8κ0a0) = −13.6/4 eV .

The effect of a static electric field ~E = E ẑ is to introduce an addition term in the Hamiltonian.
For this extra term, “think classical” gives an interaction energy −~µ · ~E = −(−e~r) · ~E = ezE =
erE cos θ. Therefore, the full Hamiltonian of a hydrogen atom in an applied electric field is

Ĥ = Ĥ0 + Ĥ ′ = Ĥ0 + eEr cos θ (14)

The extra term Ĥ ′ in Ĥ is analogous to the quartic term added to a harmonic oscillator problem
in Problem 3.3.
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Since Ĥ ′ has the effect of shifting the 1s electron cloud a little bit in the z-direction, the resulting
distribution can be mimicked by a combination of ψ1s and ψ2pz . To study the effect of Ĥ ′, a trial
wavefunction is

φ = c1ψ1s + c2ψ2pz , (15)

which is a linear combination of functions. This will lead to a 2× 2 matrix problem in variational
method. We need to calculate H11, H12, and H22 in Eq. (7). I leave the Sij to you. To help you
out (actually rather obvious), show that H11 = −e2/(2κ0a0) and H22 = −e2/(8κ0a0). But H12

is harder, so I give you the result of

H12 =
8√
2

(
2

3

)5

eEa0

Set up the 2 × 2 matrix problem and solve for an estimated ground state energy in the
presence of the electric field E . Hence, show that the energy is of the form

E ≈ − e2

2κ0a0
− (something)κ0a

3
0E2 (16)

and find that “something”.

Going back to classical electromagnetism. The energy required to induce an electric dipole moment
is given by −αE2/2. This is what we see in Eq. (16). Apply this result to demonstrate that
the atomic polarizability α is given by

α = (number)κ0a
3
0 (17)

and give the “number”. [Note: The known/experimental value is (4.5)κ0a
3
0.] Now, you have

applied QM and the variational method to calculate a measurable physical quantity of an atom.
This is real stuff and Quantum Mechanics in Action.

[Remarks: Problems 3.3-3.5 form a set of problems related to 2× 2 matrices in QM and the most
useful way of applying the variational method in real QM problems. Problem 3.5 also forms part
of the module on the ”Physics of Atoms”.]
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