
SOI

ca ) II f
*

Egg dx = f*g/ I - f ! g # f
*

dx

a Cf & g vanish
=

- f
,

g¥f*dx
at infinity )

=
- II ( ¥ )

*

gdx

.

'

.
¥ is not a Hermitian operator

(b) If f*I÷gdx =
f * ¥15 - f.IT#IIIdx

= - 15¥,
IFI ax

= - gdf.IE/ ! +15 gda7 ax

= f : gdaF dx

= I :( f¥t*gdx

-

'

. ¥2 is a Hermitian operator



c c ) II f*x¥¥gdX

= HI [ f
*

xgf ! - IF g # If *
x ) dx ]

=

- Eaff gF×Cxf* ) dx

= - ¥15 gf
*

dx - h.IS?ogxdatx*dx

-

If xp ,
is hermitian

,

we only have this term

^ n

i . Xpx is not Hermitian

f. If *

HI # C x g ) dx

= ¥[f*xg/ : - f : xgfIIdx ]

=  
- ¥15 xg III dx

* - f ! ghEF×Cxf* ) dx

^ n

.

'

. pxx is not Hermitian
.



" Lff *
C II tax ) gdx

=
- If :[gf×Cxf*) txgff± ) dx

= LI g CIE,
+ pix )

* f*d×

-

'

- II , tax is hermitian
.

Elia - aix ) = ix. I ] =  
- ti

e-
 .

Z CIE - pix ) is hermitian



(d)

g ! f* ( it is ) gdx

= f.  
I fttcgdx t f ! f

*

Dhgdx
is is are

= f.
 
I gE*f*d× + f?og5*f*d× I Hermitian operator

= IF gCE*tD*)f*d×

= IF g[ cents ) f)
*

dx

-

'

.

Et IS is Hermitian

IF f* C It -45 ) gdx

= IF J*dgdx + if .If*5gdx

= IF gE*f*d× + if

.gg/5*f*dx--fIgCE*tiD*)f*dxtfIgCEt-zD)*f'

ax

-

.

.

It -215 is not Hermitian



SQ8.	

	

	 (a)	Recall	the	 ! = 1	 hydrogen	atom	angular	part	wavefunction:	

$%,'(), *) = , 3
4/ cos) ;			$%,%(), *) = −, 3

8/ sin ) 9
:;,	

and	 <=> 	 expressed	as	derivatives:	

<=> = ?@ÂC − D̂ÂE = −FℏH? IID − D
I
I?J = FℏHsin* I

I) + cot ) cos*
I
I*J.	

	 Then	we	evaluate	the	integral:	

N$%,%∗ (), *)<=>$%,'(), *)PΩ	

= − 3Fℏ
4√2/Nsin ) 9

T:; Hsin* I
I) + cot) cos*

I
I*J cos ) PΩ	

= 3Fℏ
4√2/N sin ) 9

T:; sin * sin ) (sin ) P)P*)	

= 3Fℏ
4√2/N sinU )P)

V

'
N 9T:; sin * P*
WV

'
	

= − 3Fℏ
4√2/ H

4
3J (−F/)	

= ℏ
√2	

whereby	 [<>]%W	 (the	 “12”	 element	 of	 the	matrix	 [<>])	 is	 ℏ/√2	.	 And	 the	 other	
elements	of	 [<>]	 can	be	worked	out	in	a	similar	way.	
	

(b)	Recall	 that	 to	determine	 if	 a	matrix	 [	 is	Hermitian	or	not,	we	can	 inspect	
whether	the	matrix	elements	satisfy	 [:\ = [\:∗ .	Consider	 [<>]:	

[<>] =
ℏ
√2 ]

0 1 0
1 0 1
0 1 0

_,	

which	obviously	satisfies	 [:\ = [\:∗ .	Hence	 [<>]	 is	a	Hermitian	matrix.	
	 Consider	 [<E]:	

`<Ea =
ℏ
√2 ]

0 −F 0
F 0 −F
0 F 0

_,	



which	also	satisfies	 [:\ = [\:∗ .	Hence	 [<E]	 is	a	Hermitian	matrix.	
	

	 (c)	We	write	down	the	matrix	 [<b]:	

[<b] = [<>] + F`<Ea =
ℏ
√2 ]

0 1 0
1 0 1
0 1 0

_ + Fℏ
√2 ]

0 −F 0
F 0 −F
0 F 0

_ = √2ℏ ]
0 1 0
0 0 1
0 0 0

_.	

which	does	not	satisfy	 [:\ = [\:∗ .	Hence	 [<b]	 is	not	a	Hermitian	matrix.	
	 We	write	down	the	matrix	 [<T]:	

[<T] = [<>] − F`<Ea =
ℏ
√2 ]

0 1 0
1 0 1
0 1 0

_ − Fℏ
√2 ]

0 −F 0
F 0 −F
0 F 0

_ = √2ℏ ]
0 0 0
1 0 0
0 1 0

_.	

which	does	not	satisfy	 [:\ = [\:∗ .	Hence	 [<T]	 is	not	a	Hermitian	matrix.	
	

	 (d)	We	act	 [<b]	 on	the	column	vector	 (0,1,0)c:	

[<b] ]
0
1
0
_ = √2ℏ ]

0 1 0
0 0 1
0 0 0

_ ]
0
1
0
_ = √2ℏ ]

1
0
0
_	

where	 (1,0,0)c 	 corresponds	 to	 the	 state	 |1,1⟩ 	 (i.e.	 |! = 1,f = 1⟩ ).	 The	
operator	 [<b]	 promotes	the	state	 |1,0⟩	 into	 |1,1⟩:	

<=b|1,0⟩ = √2ℏ|1,1⟩.	
	 We	act	 [<T]	 on	the	column	vector	 (0,1,0)c:	

[<b] ]
0
1
0
_ = √2ℏ ]

0 0 0
1 0 0
0 1 0

_ ]
0
1
0
_ = √2ℏ ]

0
0
1
_	

where	 (0,0,1)c	 corresponds	to	the	state	 |1,−1⟩.	The	operator	 [<T]	 reduces	the	
state	 |1,0⟩	 into	 |1,−1⟩:	

<=T|1,0⟩ = √2ℏ|1,−1⟩.	
	 We	see	that	the	operators	 <=b	 and	 <=T	 are	similar	to	the	ladder	operators	in	
a	harmonic	oscillator	problem.	

	

	 (e)	We	express	 [<b][<T]	 as	the	following:	

[<b][<T] = 2ℏW ]
0 1 0
0 0 1
0 0 0

_ ]
0 0 0
1 0 0
0 1 0

_ = 2ℏW ]
1 0 0
0 1 0
0 0 0

_,	

and	

[<W] = 2ℏWg = 2ℏW ]
1 0 0
0 1 0
0 0 1

_	



[<CW] = ℏW ]
1 0 0
0 0 0
0 0 1

_.	

	 We	find	that	the	“something”	should	be:	

2ℏW ]
1 0 0
0 1 0
0 0 0

_ − 2ℏW ]
1 0 0
0 1 0
0 0 1

_ + ℏW ]
1 0 0
0 0 0
0 0 1

_	

= ℏW ]
1 0 0
0 0 0
0 0 −1

_	

= ℏ[<C].	
	 Hence	the	relation	is	written	as:	

[<b][<T] = [<W] − [<CW] + ℏ[<C].	
	


