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SQ6.

The model: we model a diatomic molecule as two balls connected by a string,
where the masses of the balls are m; and m,, the natural length of the string is

1y, the spring constant is K, and the coordinates of the two balls are x; and x,.

(i) Firstly, we derive the equations of motion. The extension of the string from

its natural length is (x, — x; — 1,). Then by Newton’s 2nd law,

d?x

m1F21 =K(x; —x; —19) (1)
d?x

m; dtzz = —K(x; —x; —19) (2)

where the minus sign in the second equation is due to that the force on m, isin

the opposite direction of the force on m;.

(ii) We show that the Center of Mass (CM) moves in a constant momentum by
finding its equation of motion. The Center of Mass of two masses m; and m,
placed at x; and x, is defined as

myxq + myx,

my +m,

Eq.(1) + Eq.(2) gives:

which can be further written as
dZ

P(mﬂﬁ + myx,) =0

(my + my)

d? <m1x1 + mzxz)
dt>\ my +m,
dzx 0
dez
where M = m, + m, is the total mass. We can see clearly that the acceleration of
the CM is 0. Therefore we claim that the CM moves in a constant velocity or

momentum, which means that there is no external force and the CM moves freely.



(iii) We derive the equation of motion for the relative coordinate x = x, — x4,

and compare it with the standard harmonic oscillator equation

d*r

) +Kr=0 (3)
where u is the reduced mass.
m, - Eq. (1) —m, - Eq. (2) gives,
2
m;ms; de? (x1 — x2) = K(my +my)(x2 — x1 — 1p)
Then we replace (x, —x;) by x,
d?

mimy 2 X = —K(m; +my)(x — 1)

mym, d?
— —r)=0 (4
my +m2dt2x+(x o) (4)

Comparing equation (4) with the above standard harmonic oscillator equation

(3), we find that the definition of the reduced mass is given by

. mm,
b+ m,
or
1 1 1

o m mp

and r = (x — 1) is the extension of the string from its natural length.
(iv) We derive the characteristic angular frequency w, frequency v and

wavenumber v. Recall that the angular frequency for a harmonic oscillator can be

simply obtained from its equation of motion, i.e. from equation (3):

The frequency



The wavenumber

Conclusion: We transform the original problem into the CM motion plus the

relative motion, i.e. the original equations of motion

d?x,
my dt2 K(x; —x1 — 19)
d?x,
m; dt2 —K(x; — %, — 1)
have been transformed into
d*X _0
dt?
d*r
MP +Kr=0

where the CM motion is a free motion, as two-body problem under our

consideration does not have an external force.



