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	 We	 use	 the	 perturbation	 theory	 to	 treat	 the	 hydrogen	 atom,	 and	 the	
Hamiltonian	 is	 divided	 into	 two	 parts:	 a	 solvable	 part	 !"	 and	 a	 perturbation	
part	 !# ,	i.e.	
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	 (a)	 Applying	 the	 1st	 order	 perturbation	 theory,	 the	 correction	 to	 the	
hydrogen	atom	energy	is:	
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	 (b)	Firstly	we	would	like	to	find	a	relation	between	 89(;)	 and	 〈H!" − I(0)J
(
〉,	

where	 I(0) = −,(/(4./"0).	
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	 Therefore	their	expectation	values	should	also	satisfy	

89
(;) = 	 〈!#〉 = −

1
2*6(

	〈H!" − I(0)J
(
〉.	

	 We	further	write	 89(;)	 as	
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	 The	involved	integrals	are	given	by	
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where	 X" = 4./"ℏ(/(*,()	 is	the	Bohr	radius.	And	the	original	Hydrogen	atom	
energy	is	given	by	
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	 Then	we	have	
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where	 Z = ,(/(4./"ℏ6) ≃ 1/137	 is	the	fine	structure	constant.	We	see	that	the	
magnitude	of	 the	 correction	 term	 is	 governed	by	 Z(,	which	 is	 about	 (1/137)(	
of	the	unperturbed	energy	 89(").	
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