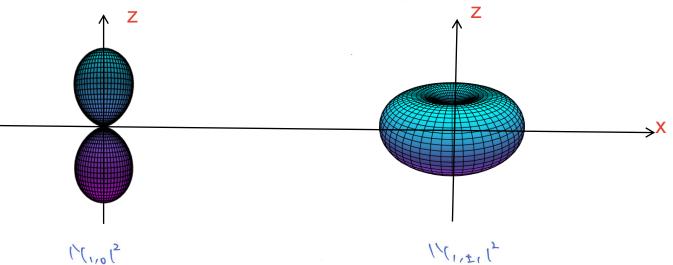
In PHYS 3021, we have learned the spherical harmonics being the solutions of the angular part of a hydrogen atom, labeled as:

(can be found in Note VIII - 16 in 3021)

a. While You can be shown to be related to the Pz orbital,

(an op-shaped plot potenting to 2-direction),

it is difficult to relate You and Your with Px and Ps.



However, consider In 11,1 + In 11,11 :

$$\frac{1}{L} \langle ... + \frac{1}{L} \langle ... \rangle = \frac{1}{L} \left(\frac{13}{18\pi} \right) sin \theta \left(e^{i\varphi} + e^{-i\varphi} \right)$$

$$= -L \cdot \left(\frac{1}{18\pi} \right) sin \theta sin \varphi \qquad (Note: sin \varphi = \frac{1}{2} i \left(e^{i\varphi} - e^{-i\varphi} \right) \right)$$

$$= -i \cdot \frac{13}{18\pi} sin \theta sin \varphi \qquad (1)$$

In spherical, Coso = F.

be, Yno can be written as as Tho = Jan r, indicating its nature to be P2 ortital., he, PP2 = JAR T

Similarly, we can write down the wavefunctions of Px and Py directly as:

From (1), we can conclude that 1/2 Y 1 + 1/2 Y 1 = -1 9 P2

Smilarly, \frac{1}{2} \(\lambda_{11,1} - \frac{1}{2} \lambda_{11,-1} = \frac{1}{2} \lambda_{27} \lambda_{-e} \frac{1}{7} \rangle =- J2 (]37 (0)9

(cost = = = (ei+ e-iq))

$$\therefore \quad \phi_{l^*} = -\frac{1}{l^*} \left(\lambda^{(1)} - \lambda^{(1-1)} \right)$$

b. From part a), $\phi_{p_*} = -\frac{1}{\hbar}(\gamma_{i,i} - \gamma_{i,-1})$

$$\int_{0.5} \chi^{11-1} = 1(1+1) \, \mu_5 \, \chi^{11-1} = 5 \, \mu_5 \, \chi^{11-1}$$

$$\therefore \int_{0.5} \chi^{11/1} = 1(1+1) \, \mu_5 \, \chi^{11/1} = 5 \, \mu_5 \, \chi^{11/1}$$

$$= -\frac{1}{L^{2}} \left(\int_{S} \chi^{(1)} - \int_{S} \chi^{(1)} - \int_{S} \chi^{(1)} \right)$$

$$= -\frac{1}{L^{2}} \left(\int_{S} \chi^{(1)} - \int_{S} \chi^{(1)} - \int_{S} \chi^{(1)} \right)$$

$$\frac{1}{2} x_{11} = (1) t_{11} x_{11} = t_{11} x_{11}
\frac{1}{2} x_{11-1} = (-1) t_{11} x_{11} = -t_{11} x_{11-1}
\frac{1}{2} t_{12} x_{11} = (-1) t_{11} x_{11} - \frac{1}{2} x_{11-1}
\frac{1}{2} t_{12} x_{11} - \frac{1}{2} x_{11-1}
\frac{1}{2} t_{12} x_{11} + \frac{1}{2} x_{11-1}
\frac{1}{2} t_{12} x_{11} + \frac{1}{2} x_{11}$$

$$\frac{1}{2} t_{11} x_{11} + \frac{1}{2} x_{11} x_{11}
\frac{1}{2} t_{11} x_{11} + \frac{1}{2} x_{11} x_{11}$$

$$\frac{1}{2} t_{11} x_{11} + \frac{1}{2} x_{11} x_{11} + \frac{1}{2} x_{11} x_{11}$$

$$\frac{1}{2} t_{11} x_{11} + \frac{1}{2} x_{11} x_{11} + \frac{1}{2} x_{11} x_{11}$$

$$\frac{1}{2} t_{11} x_{11} + \frac{1}{2} x_{11} x_{11} + \frac{1}{2} x_{11} x_{11} + \frac{1}{2} x_{11} x_{11}$$

$$\frac{1}{2} t_{11} x_{11} + \frac{1}{2} x_{11} x_{11} + \frac{$$

C. From part a),
$$\Phi_{p_x} = -\frac{1}{D_x}(Y_{1/1} - Y_{1/1})$$

 $\Phi_{p_y} = \frac{1}{D_x}(Y_{1/1} + Y_{1/1})$

The inner product between Pps and Pps D:

$$\int \phi_{0x}^{*} \, \phi_{0y} = 3\Omega$$
[Mile ; here $3\Omega = 5 \text{ into 20 dp} \text{ and the integration introduct the region } 0 \in [0, \pi].]$

$$= -\frac{1}{2} \int (Y_{1,1}^{*} - Y_{1,-1}^{*}) (Y_{1,1} + Y_{1,1-1}) \, d\Omega \qquad \phi \in [0, 2\pi].$$

$$= -\frac{1}{2} \left[\int Y_{1,1}^{*} Y_{1,1} \, d\Omega + \int Y_{1,1}^{*} Y_{1,1-1} \, d\Omega - \int Y_{1,1-1}^{*} Y_{1,1-1} \, d\Omega \right]$$

By the orthogonality of Ye, me,

$$=-\frac{1}{2}\left[1\right]$$

: PPx and Ppy if the tast indeed orthogonal.

Similar tract trick can be done for l=2 (d orbitals). e.g. (1,1 = -] Csoshoeid, (Checked from Note VIII - 16 or) Y21-1 = 10 (101/200-19 1/2 (1211 + 121-1) = 1/2/2/2 COSSINO (-eig+eig) = 172 15 COSCHO \$ SIND =-1 HT COTO zybo zyb 15 (1211 + 121-1) = He corolinging Similarly, - 1/2 (12,1 - 12,-1) = - 1/2 (Jis) coloribo (-eid-e-id) = 1 (01 0 2 1/4 00 0) 2 orthogonal Tworefunctions are created from the linear combinations of V2.1 and V2.-1. In fact, the $\int d-states$ in chemistry come from linearly combining (2, me (me = 0, ±1, ±2) in suitable ways. leasy to check shale $\int_0^{2\pi} sin\phi \omega s \phi ds = 0$.

(a) In spectroscopy:
$$\overline{D} = \frac{1}{\lambda} + wavelength$$

Wavenumber

For transition from
$$N_2 \rightarrow N_1$$
 (assumes $N_2 > N_1$)

$$E_{n_2} - E_{n_1} = \frac{me^4}{8E_0^2h^2} \left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right)$$

Frequency of light emitted during the transition:

$$E_{nz} - E_{n_1} = hf$$

$$f = \frac{me^4}{8\epsilon^2h^3} \left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right)$$

Using the relation $C = f \lambda$,

$$\lambda = \frac{c}{f} = \frac{8 \varepsilon^2 h^3 c}{m e^4} \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)^{-1}$$

$$\overline{D} = \frac{m e^4}{8 \varepsilon^2 c h^3} \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$

Calculating the prefactor:

$$\frac{me^4}{86^3ch^3}$$
 $\approx 109737 cm^{-1}$

It is the limit when $n_z \rightarrow \infty$ and $n_i = 1$

Configuration	Term	J	Level (cm ⁻¹)	Ref.
1s	² S	1/2	0.0000	MK00a
2p	2 _P °	1/2	82258.9191	MK00a
	5.000	3/2	82259.2850	MK00a
2s	2 _S	1/2	82258.9544	MK00a
3p	2 _P °	1/2	97492.2112	MK00a
		3/2	97492.3196	MK00a
3 <i>s</i>	2 _S	1/2	97492.2217	MK00a
3 <i>d</i>	² D	3/2	97492.3195	MK00a
		5/2	97492.3556	MK00a
4p	2 _P °	1/2	102823.8486	MK00a
	3000	3/2	102823.8943	MK00a
45	2 _S	1/2	102823.8530	MK00a
4 <i>d</i>	2 _D	3/2	102823.8942	MK00a
	Б	5/2	102823.9095	MK00a
4 f	2 _F °	5/2	102823.9095	MK00a
	,,_,	7/2	102823.9171	MK00a
5 <i>p</i>	2 _P °	1/2	105291.6287	MK00a
		3/2	105291.6521	MK00a
5 <i>s</i>	2 _S	1/2	105291.6309	MK00a
5 <i>d</i>	2 _D	3/2	105291.6520	MK00a
	1010	5/2	105291.6599	MK00a
5 <i>f</i>	2 _F °	5/2	105291.6598	MK00a
		7/2	105291.6637	MK00a
5 <i>g</i>	2 _G	7/2	105291.6637	MK00a
		9/2	105291.6661	MK00a
н	Limit		109678.7717	MK00a
			\Rightarrow	

Energy levels of H atom not only depend on the quantum number n

More interestingly, energies can be different even we have same n and l (e.g. 2p) It is the effect of spin-orbit coupling and you will learn it later in this

course

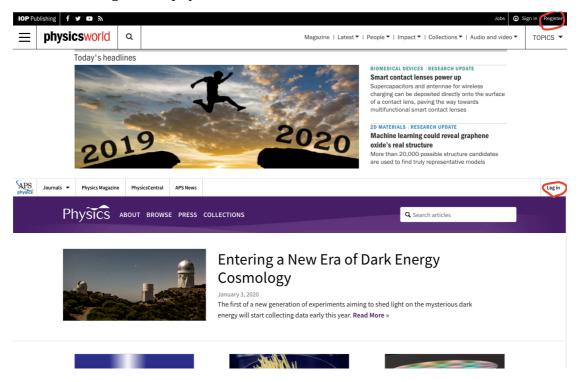
The value is smaller than our results in part (a)
To take into account of the fact that H-atom is a two-body problem, we should replace m in Eq (2) by the reduced mass μ

 $\mu = M_{proton} Me / (M_{proton} + Me) = 0.999456 Me$

The corresponding value of

 $\frac{\mu e^4}{88^2 h^3 c}$ \(\tau \) 109677 cm⁻¹

You can register to physicsworld and APS from here:



Website of Nature and Sicence: https://www.nature.com/,

https://www.sciencemag.org/.