
PHYS3022 APPLIED QUANTUM MECHANICS

SAMPLE QUESTIONS FOR DISCUSSION IN WEEK 6 EXERCISE CLASSES (2-6
March 2020)
What are Sample Questions (SQs)? TA will discuss the SAMPLE QUESTIONS in exercise
classes. The Sample Questions are designed to serve several purposes. They either review what you have
learnt in previous courses, supplement our discussions in lectures, or closely related to the questions in
an upcoming Problem Set. You should attend one exercise class session per week. You are encouraged
to think about (or work out) the sample questions before attending exercise class and ask the TA
questions.

Students: The SQs are related to the time-independent perturbation theory. Read the summary first.
Non-degenerate Perturbation Theory - Summary of Key Results

Given Ĥ = Ĥ0 + Ĥ ′, but the TISE problem Ĥψ = Eψ cannot be solved analytically. The un-

perturbed problem Ĥ0ψ
(0)
n = E

(0)
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(0)
n is, fortunately, solvable and the whole sets of {ψ(0)
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n }

are known. Here, Ĥ ′ is the perturbation term and the unperturbed problem is meant to be a big
portion of the problem. The most important result of non-degenerate perturbation theory is an
approximate formula for the n-th eigenvalue of the problem
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The first-order theory to the n-th eigenstate is
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n +
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We derived these formulas in class. It is more important that you understand the meaning of the
symbols in Eqs.(2) and (3) and how to apply the formulas than to derive them.

Applying the results requires two levels of maturity in physics and mathematics. (a) We need to set
up the problem (i.e., identify Ĥ0 and Ĥ ′) and then write down the integrals explicitly in Eq. (2) and
Eq. (3). (b) We need to do the integrals. For (a), after identifying Ĥ0, we need the exact solutions to
TISE of Ĥ0. We know only a few of them, including the infinite well, harmonic oscillator (1D,2D,3D),
rigid rotors, and hydrogen atom. For (b), we need to do many integrals involving sine and cosine
functions (infinite well), Hermite polynomials (harmonic oscillator), eimφ and Ylm(θ, φ) (rotors), and
ψnlm(r, θ, φ) = Rnl(r)Ylm(θ, φ) (hydrogen atom). Some integrals are hard to do, but there are integral
tables and web sites to come to help. The point is that you shouldn’t let the mathematics ruin your
appreciation to the cleverness of making approximations. The SQs here apply the perturbation results.

SQ13: 1st and 2nd order perturbation theory applied to an exactly solvable problem (harmonic oscilla-
tor)
SQ14: Shifts in hydrogen atom energies due to relativistic correction to kinetic energy - 1st order
perturbation theory
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SQ13 Harmonic Oscillator – an exactly solvable problem treated by 1st and 2nd order perturbation theory

Consider an 1D harmonic oscillator in which the potential energy function is U(x) = 1
2k(1 + ε)x2,

where ε is meant to be ε � 1. This is just a harmonic oscillator with spring constant k(1 + ε)
instead of k and therefore it is exactly solvable. Write down the exact eigenvalues of the
problem (no derivation needed).

Knowing the exact results, we actually don’t need the perturbation theory. It is, however, inter-
esting to see how well perturbation theory works.

(a) The exact eigenvalues can be expanded into a power series in ε because ε� 1. Do it.

(b) Taking the unperturbed problem as defined by the Hamiltonian Ĥ0 with

Ĥ0 = − h̄2

2m

d2

dx2
+

1

2
kx2 (4)

so that the perturbed problem as

Ĥ = − h̄2

2m

d2

dx2
+

1

2
k(1 + ε)x2 = Ĥ0 + Ĥ ′ , (5)

identify the perturbation term Ĥ ′ and obtain the 1st order perturbation in the energy for
all states.

(c) Next consider only the ground state. Find the 2nd order perturbation to the ground
state energy. Hence, write down the ground state energy including 0th, 1st, and 2nd order
terms.

(d) Compare the perturbation result with the exact result in part (a) to the same order.

(e) (Optional for TA, just for fun) How about the 1st order correction to the ground state
wavefunction?

[Remark: This is Problem 6.2 and Problem 6.4(b) in Griffiths’ Introduction to Quantum
Mechanics.]

SQ14 Non-degenerate perturbation theory: 1st order correction to hydrogen atom energies due to rela-
tivistic correction to the kinetic energy

Background – Schrödinger solved the hydrogen atom problem in 1926 and found the famous
−13.6/n2 (in eV) energies as observed in hydrogen spectrum (Lyman, Balmer,... series). In SQ2,
we used the reduced mass to make the numbers close to spectroscopic data. In SQ4, we showed
that there is a relativistic correction term in the Hamiltonian when we include one more term
in the kinetic energy, i.e. T ≈ p2/2m + (correction). This SQ treats the (correction) term as
perturbation.

The result is important in that (i) the correction is tiny, and (ii) the small correction is charac-
terized by the fine structure constant squared, or α2. We met the fine structure constant
α ≈ 1/137 in SQ4.

(a) In SQ4, we found that

T ≈ p2

2m
− p4

8m3c2
, (6)

keeping a leading correction term due to relativity. Hence, using the corrected kinetic energy
term in the Schrödinger Equation of a hydrogen atom, we have

H =
p2

2m
− e2

4πε0r︸ ︷︷ ︸
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− p4
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The unperturbed Ĥ0 problem is analytically solvable. The energy eigenvalues are the famous

E
(0)
n ∼ −13.6/n2 in eV and the eigenstates are ψ

(0)
n`m`

(r, θ, φ).

Apply 1st order perturbation theory (don’t do the integrals at this point) to write
down the correction to the hydrogen atom energies.

(b) Evaluate (or simply give the results of) the integrals and hence give an explicit
expression of the first order shift in energy due to Ĥ ′. It is important to point out
how small the correction term is, in comparison to the unperturbed energy.

Hints to TA: The Ĥ ′ term can be handled as follows. (i) Show that the 1st order per-
turbation in energy is related to the expectation value of 〈(Ĥ0 −U(r))2〉 with respect to the
unperturbed hydrogen atom states, where U(r) = −e2/(4πε0r) = −e2/(κ0r). (ii) Hence,
show that it amounts to evaluating the value of expectation values 〈1/r〉 and 〈1/r2〉 for

different ψ
(0)
n`m`

(r, θ, φ). (iii) These are standard integrals of hydrogen atom physics, although
not easy to do. I looked them up from books and found that

〈1
r
〉n`m`

=
1

n2a0
, 〈 1

r2
〉n`m`

=
1

(`+ 1
2)n3a20

(8)

where the subscript (n, `,m`) labels the state in which the expectation value is evaluated and
a0 = κ0h̄

2/(me2) is the Bohr radius.

Use these results to obtain the first order correction E
(1)
n`m`

. Most importantly, show

that the magnitude of the correction is governed the fine structure constant squared α2,

which is about (1/137)2 of the unperturbed energy E
(0)
n . This is therefore tiny. Though

small, spectroscopy (atomic spectrum) is sensitive enough that we need to con-
sider such corrections.

[For TA: It is more important to point out how those integrals emerge from the perturbation
formula and what those integrals are. You need not carrying out the expectation value
calculations in Eq. (9), unless you want to show off your technique in an appendix.]

[Further remark: Those of you with sharp eyes may start worrying why we could apply 1st
order (non-degenerate) result here, as hydrogen energy levels carry degeneracy in general,
e.g. there are several (n = 2) states with the same energy −13.6/4 eV. This is a tricky
question that can be explained by even sharper eyes on the form of the perturbation Ĥ ′. For
the moment, don’t worry about it as the reason is a bit technical for some students. Another
remark is that there will be another relativistic correction term related to the spin of the
electron that we have not considered.]
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