
PHYS3022 APPLIED QUANTUM MECHANICS

SAMPLE QUESTIONS FOR DISCUSSION IN WEEK 2 EXERCISE CLASSES (13-16
January 2020)
What are Sample Questions (SQs)? TA will discuss the SAMPLE QUESTIONS in exercise
classes. The Sample Questions are designed to serve several purposes. They either review what you
have learnt in previous courses, supplement our discussions in lectures, or closed related to the questions
in an upcoming Problem. You are encouraged to think about (or work out) the sample questions before
attending exercise class and ask the TA questions.

SQ4: The relativistic correction term for hydrogen atom
SQ5: Most probable distance of finding the electron in 3d hydrogen states
SQ6: Reduced mass µ emerges when relative separation is introduced

SQ4 The relativistic correction term for hydrogen atom

Background – This is a follow-up of SQ2 in Week 1. Schrödinger solved the hydrogen atom
problem in 1926 with U(r) ∼ −1/r (Coulomb) and found the famous −13.6/n2 eV energies
observed in hydrogen spectrum. In SQ2, we saw that these numbers are slightly off the high-
precision spectroscopic data. They are 99.9% right, but a bit off. In SQ2, we tried the correction
of replacing the electron mass by the reduced mass, i.e., taking into account the finite mass of the
nucleus. Another possible correction is that the kinetic energy term in the Hamiltonian in the
Schrödinger Equation is Newtonian TNewton = p2/2m. Einstein published his famous papers on
special relativity in 1905. Naturally, soon after Schrödinger’s work, people started to consider the
relativistic corrections to the Schrödinger’s solutions. This SQ deals with writing down one such
correction term, i.e., T ≈ p2/2m+ (correction).

(a) Meeting the fine structure constant. Do we really need to consider relativistic effects?
TA: Bohr’s picture of a hydrogen atom has the the electron orbiting around the nucleus. Take
the results from Bohr’s model, find the ratio of the speed v1 of the electron in the lowest
orbit (n = 1 orbit or what is called the ground state in QM) to the speed of light c. The
ratio v1/c turns out to be a combination of fundamental constants that is very important in
physics. This is called the fine structure constant α and it has a value of ≈ 1/137.

(b) Some would like to interpret α differently. One is related to the hydrogen’s lowest energy
and the electron’s rest energy. TA: Try this and see how it come out to be related to α.

(c) Next, we want to write down a correction term to T = p2/2m. Starting with the relativistic
expression

T =
√
p2c2 +m2c4 −mc2 (1)

and expanding the expression in powers of the parameter (p/mc) that is assumed to be small,
show that there is a correction term to p2/2m given by

T ≈ p2

2m
− p4

8m3c2
. (2)

Important remarks: Taking into account of this relativistic correction, we need to handle
the revised Hamiltonian H for a hydrogen atom of the form:

H =
p2

2m
− e2

4πε0r︸ ︷︷ ︸
solved exactly

correction to handle︷ ︸︸ ︷
− p4

8m3c2
= H0 +H ′ (3)
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This is a standard situation in quantum mechanics (physics in general). We have a problem
that we know how to solve if we ignore some small correction term(s). To handle the problem
of H, either we take H as a new problem and solve it from scratch again or we take the known
solutions of H0 and use them to do approximations and get at meaningful but approximated
results of the H problem. The latter involves perturbation theory, a topic that we will
discuss in our course later.

SQ5 Most probable distance of finding the electron in 3d hydrogen states

Background: While Born said that |ψn,`,m`
(r, θ, φ)|2 is the probability density, i.e., |ψn,`,m`

(r, θ, φ)|2d3r
is the probability of finding the electron within a volume element d3r at the location specified by
r = (r, θ, φ), it is hard to visualize it. It is simpler and more useful to ignore (or averaged away)
the angular information. We then obtain the radial probability distribution function P (r), with
P (r)dr being the probability of finding the electron at a distance r to r+dr away from the origin,
regardless of the direction (regardless of the angles). P (r) is an easier function to visualize as it
depends on r only. For a given ψn,`,m`

(r, θ, φ), the corresponding P (r) = r2[Rn`(r)]
2. Note that

the factor r2 increases with r, while [Rn`(r)]
2 drops with r at large r. Therefore, there is a peak

in P (r) that gives the most probable distance of finding the electron. In the Bohr model (1913),
he said that the electron in the n-th orbit is at a distance n2a0 away.

As shown in class notes, one can readily construct the radial probability distribution function for
the 1s state of a hydrogen atom as P (r) = r2[R1s(r)]

2 and show that the most probable distance
is at the Bohr radius a0.

TA: Look up the 3d states with radial function R32(r). Sketch R32(r). Construct P32(r) (the
3d state), sketch P32(r), and find the most probable distance of finding the electron in the 3d
states. Comment on the similarity and difference between QM result here and Bohr’s prediction.

SQ6 Reduced Mass µ emerges when the relative separation is introduced - Relevant to the Hydrogen
atom and Diatomic Molecules

Background: In SQ2, TA showed that using the reduced mass µ instead of the electron mass
gives the ionization energy of a hydrogen atom that is in better agreement with experimental
data. This SQ reminds you of how the reduced mass comes up. In physics, including quantum
physics, we often deal with a system of two or more particles. Three-body problems are typically
not exactly solvable (both in classical and quantum physics). However, two-body problems can
be dealt with readily. There are many examples in physics – planets orbiting around the Sun is a
difficult problem, but only the Earth orbiting around the Sun (and ignoring the other planets) is
easier. We solved the hydrogen atom problem by assuming the proton being fixed at the origin.
In principle, the hydrogen atom problem is a two-body problem with a proton and an electron.
Similarly, replacing the proton by an Atom A and the electron by another atom B (doesn’t mean
Boron here), we have an AB molecule. Thus, a diatomic molecule, being viewed in the simplest
viewpoint of two balls connected by a spring (or a stick), is also a two-body system. Here, the idea
of reducing a two-body problem to a one-body problem plus a centre of mass problem is reviewed.
The result is important in handling all many-body systems.

A simple classical mechanical model of a diatomic molecule (molecule consisting of two atoms) is
that of two balls of masses m1 and m2 connected by a spring with a natural length r0 and spring
constant K. To make life easier, let the molecule lives only on the x-axis. Instantaneously, the
coordinates of m1 and m2 are x1 and x2, respectively.

TA: Show that the two equations of motion are:

m1
d2x1
dt2

= K(x2 − x1 − r0) (4)
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m2
d2x2
dt2

= −K(x2 − x1 − r0) (5)

By manipulating these equations, demonstrate clearly that the equation of motion for the
Center of Mass (CM) corresponds to the CM moving uniformly in time with a constant momentum,
obtain the equation of motion for the relative coordinate x = x2−x1, and illustrate that the
standard harmonic oscillator equation

µ
d2r

dt2
+Kr = 0 (6)

emerges, where µ is the reduced mass. Show clearly what r is about. Give the expressions for
the characteristic angular frequency ω, frequency ν and wavenumber ν.

Remarks: We could have allowed rotations as well (not restricted to be on a line). The picture
so emerges is similar. It is related to the 2D or 3D rotor problem in QM. It is also interesting to
start with the Hamiltonian H(x1, p1, x2, p2) for the problem given in Eqs.(4) and (5), and work
out the separation into CM and relative coordinate problems at the Hamiltonian level. [TA: don’t
need to work this out.]
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