
PHYS3022 APPLIED QUANTUM MECHANICS

SAMPLE QUESTIONS FOR DISCUSSION IN WEEK 12 EXERCISE CLASSES (20
- 24 April 2020)
The Sample Questions are designed to serve several purposes. They either review what you have
learnt in previous courses, supplement our discussions in lectures, or closed related to the questions
in an upcoming Problem Set. You should attend one exercise class session. You are encour-
aged to think about (or work out) the sample questions before attending exercise class and ask the
TA questions.
Progress: In Week 11, we discussed the energetics of ionic bond, the difficulties in the full QM
molecular problem, and the Born-Oppenheimer approximation. In Week 12, we will discuss LCAO
in solving the electronic part of the simplest problem of H+

2 molecular ion, and the result is the emer-
gence of bonding and anti-bonding molecular orbitals (MO’s). The LCAO-MO idea explains much
of molecules (and solids), including σ and π bonds, hybridization, Hückel theory of delocalization
of π-electrons in benzene (and in solids).

SQ28 - Overlap integral S(R) for H+
2 molecular ion: R-dependence and exact evaluation

SQ29 - Why do Diatomic molecules have only one vibrational model? General rules? Classical
mechanics helps.

SQ28 Normalizing ψ+ LCAO wavefunction in H+
2 ion and evaluating S(R) for nuclei at

a separation R.

In the electronic part of H+
2 molecular ion problem, one electron is under the influence of

two protons. Each separation R of the two protons gives a separate QM problem. When
considering the ground state of H+

2 , we would think by physical sense that “Ah! The electron
is on A-side atomic ground state. But...the electron can also be on B-side. We couldn’t tell.
So...we form a linear superposition of these two possibilities.” And this results in the following
wavefunction, which is the essential of LCAO (Linear Combination of Atomic Orbitals) to
describe molecular orbitals (MOs).

(a) Any separation R. We may write down the bonding MO as

ψ+(r) = CAψ1s,A + CBψ1s,B (1)

and then do a variational calculation. Here ψ1s,A and ψ1s,B are the normalized 1s
atomic orbitals for the nuclei located at RA and RB, respectively. You may regard A
to be on the left and B on the right (without loss of generality).

For H+
2 , the problem is easier. The symmetry of the problem tells us that what you

will call the A-side would be another person’s B-side (e.g. someone behind the white
board) as both sides correspond to a hydrogen nucleus (proton). This symmetry appears
in the form of U(r) that the electron sees. By this symmetry argument, we expect
|CA|2 = |CB|2 and hence the bonding MO (with CA = CB = C+) can be written as

ψ+(r) = C+(ψ1s,A + ψ1s,B) (2)

without doing any variational calculations, where C+ is a normalization constant to
be determined. This argument is valid for any separation R, but the normalization
constant C+ will depend on R, as shown below.
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TA: Show that the normalization constant C+ is in general given by

C+ =
1√

2(1 + S)
, (3)

where the number S is an integral given by

S(R) =

∫
d3r ψ∗

1s,A(r)ψ1s,B(r) =

∫
d3r ψ∗

1s,B(r)ψ1s,A(r) =

∫
d3r ψ∗

1s(r−RA)ψ1s(r−RB)

(4)
with the integrals taken over all space. The 1s wavefunction is real for hydrogen atom.
This is the Sji when we turn TISE in a matrix. The last term in Eq. (4) gives the explicit
form of S(R), with R = |RA −RB|. This integral is called the Overlap Integral. It
should be clear that, since the two atomic orbitals are centered at different nuclei,
S is in general nonzero and it is a function of R.

(b) Draw schematically a diagram with the two 1s atomic orbitals (exponentially decay-
ing from a location xA (just consider x-coordinates for simplicity) and another decaying
from xB). Illustrate and explain that for large separations R = |xA−xB|, the integral
vanishes, i.e., S = 0. For smaller R where the two 1s orbitals come closer, sketch the
integrand in S and illustrate that S is nonzero.

(c) The integral S(R) can be evaluated exactly, but the mathematics is tedious. The answer
(in atomic units) is simple though. It is

S(R) = e−R

(
1 +R+

R2

3

)
, (5)

where R is the inter-nuclear separation (measured in the Bohr radius a0). Plot S(R) as
a function of R. Evaluate S(R) at R = 2 (meaning twice the Bohr radius), say. [Note
that R = 2 is close to the equilibrium separation in H+

2 .]

(d) Show the other (odd) linear combination

ψ−(r) = C−(ψ1s,A − ψ1s,B) (6)

has a different normalization constant C−.

(e) This part is OPTION for exam purposes. It is only for the TA to show
off. Evaluate the integral S(R). Try to use a method that is easier for students to
follow. This is meant to illustrate that H+

2 ion is simple enough for LCAO integrals to
be calculated exactly.

[Remark: The same method of evaluating S(R) can be applied to evaluate the other two
integrals J(R) and K(R) in the LCAO-MO calculation for H+

2 , as given in Appendix A
(optional) of class notes.]
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SQ29 Why do diatomic molecules have only one vibrational mode? General rules?
Classical Mechanics helps.

(a) There are many empirical rules for chemistry students to remember. One of them is the
“3N − 5” rule for a linear molecule. What does it say? It says that for a molecule
making consisting of N atoms and the molecule is linear in shape like a rod, there are
(3N −5) vibration normal modes. [Recall in classical mechanics, you did the vibrational
normal modes problem with balls connected by springs.] A diatomic molecule is certainly
linear in shape, like a dumbbell with atom A and atom B at the two ends.

TA: For a diatomic molecule, N = 2 and therefore there are 6 degrees of freedom
(each atom has 3 coordinates), explain what those “5” are about and that the
only remaining vibrational mode has the normal mode (angular) frequency given by
ω =

√
k/µ, where k is the spring constant and µ is the reduced mass.

TA: Hence, explain why there are in general (3N − 5) vibrational modes after taking
care of the center-of-mass and rotational degrees of freedom for a linear molecule
with N atoms.

(b) The quantum mechanics of the vibrational motion in a diatomic molecule is therefore
that of a harmonic oscillator of angular frequency ω. It is expect that something unusual
will occur when EM wave of the right ω is incident upon the molecule. For the molecule
75Br19F, where the superscript indicates the number of nucleons (protons plus neutrons)
in the nucleus and thus the mass, something unusual is observed at 380 cm−1. (Note
that spectroscopists like to use the wave number.) Estimate the spring constant of
the bond. [Hint: For Br (and F), the mass can be taken as 75 amu (19 amu) (atomic
mass unit), where 1 amu corresponds to 1.661 ×10−27 Kg.]

(c) The famous or now infamous molecule CO2 (CO2 is blamed for its impact on climate, but
it is just a molecule) is a linear molecule. So there are 4 vibrational modes. Google
them and sketch the 4 vibrational modes. [Note: The point here is NOT to solve for
the normal modes (although classical mechanics balls-and-springs can give the answers),
but illustrate why there are 4 modes and what they are.]

(d) There is also the “3N − 6” rule (so many rules) for non-linear molecules. Explain why
there are (3N−6) vibrational modes after taking care of the CM and rotational motions.

(e) The three atoms in a water molecule do not line up linearly, but extended an angle
between H-O-H. Google the vibrational modes of a H2O molecule and sketch the 3
vibrational modes.

[Remarks: The topics of degrees of freedom, CM and relative motions, normal modes and
oscillators are typical in classical mechanics courses. I hope that you understand why
they are there and that they are useful in understanding QM of molecules, greenhouse
gases, and climate change.]
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