
PHYS3022 APPLIED QUANTUM MECHANICS

SAMPLE QUESTIONS FOR DISCUSSION IN WEEK 10 EXERCISE CLASSES (6
- 10 April 2020)
The Sample Questions are designed to serve several purposes. They either review what you have
learnt in previous courses, supplement our discussions in lectures, or closed related to the questions
in an upcoming Problem Set. You should attend one exercise class session per week. You
are encouraged to think about (or work out) the sample questions before attending exercise class
and ask the TA questions.

Progress: In Week 9, we discussed the anti-symmetric requirement on multi-electron wavefunc-
tions, the Slater determinant form invoking single-electron states, Pauli Exclusion Principle, Helium
(1s,2s) excited states, exchange integral and the origin of magnetism. After the Reading Week, we
will discuss the periodic table, transitions between atomic states through absorption and emission
of light in Week 10. We will see how quantum mechanics gives the selection rules, the condition
that the incident light must of the right frequency to stimulate absorption and emission, and what
governs the intensities of spectral lines.

SQ23 - Three-electron wavefunctions - Slater determinants
SQ24 - Electric dipole matrix elements, forbidden and allowed transitions in hydrogen atom between
n = 1 and n = 2 states

SQ23 Three-electron wavefunctions - Slater determinants

Consider three electrons (three fermions) in three different single-particle states (after using
IPA say) labelled a, b, c with wavefunctions φa, φb and φc. [Note: Sometimes, the label a
could already carry a spin information, e.g. “1s-up” or “1s↑”. For example, the ground state
of lithium atom can be thought to have electrons in 1s-up, 1s-down, and 2s-up (could be
2s-down).]

A wavefunction that has the correct anti-symmetric property is given by a Slater determi-
nant

ψ(1, 2, 3) ∝

∣∣∣∣∣∣∣
φa(1) φb(1) φc(1)
φa(2) φb(2) φc(2)
φa(3) φb(3) φc(3)

∣∣∣∣∣∣∣ (1)

Here, 1, 2, and 3 are the coordinates of particles 1, 2, 3, respectively. This SQ reminds you
of some basic determinant properties and illustrates that determinants are useful.

(a) Find the normalization factor in front of the expression, given that the single-
particle states φ’s are properly normalized. [Remark: This is a counting problem. The
normalization factor is related to the number of terms in the right-hand side of Eq. (1).]

(b) Show that ψ(1, 2, 3) is anti-symmetric with respect to interchanging the coordinates of
any two particles.

(c) There is a problem if we assign two particles into the same single-particle state.
Illustrate what the problem is when two of the three states are identical. Hence,
point out that the Pauli Exclusion Principle stating “two electrons cannot occupy the
same (single-electron) state” follows follows from Eq. (1).

(d) Another important and interesting observation from Eq. (1) is that two fermions tend
to avoid each other. For illustrative purpose, let’s simply take the coordinates to be
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spatial coordinates r1, r2, r3 for three fermions and hence ψ is a spatial wavefunction
of three fermions. In this case, Eq. (1) becomes

ψ(r1, r2, r3) ∝

∣∣∣∣∣∣∣
φa(r1) φb(r1) φc(r1)
φa(r2) φb(r2) φc(r2)
φa(r3) φb(r3) φc(r3)

∣∣∣∣∣∣∣ (2)

Show that when any two fermions take on the same location in real space, the spatial
wavefunction vanishes. By invoking the Born’s interpretation of the wavefunction, state
what it means. [Remarks: Contrasting what we do here with part (c), the wavefunction
vanishes only for some particular coordinates of the particles. This is NOT a problem,
because the wavefunction does not vanish for other choices of the coordinates. Thus, an
antisymmetric spatial wavefunction has the property that the particles tend
to avoid each other. This is an important concept. Note that this property comes
entirely from the anti-symmetric form of the wavefunction. This avoidance of particles
is there even there is no physical interaction between particles. This is why ideal
(non-interacting) Fermi gas and ideal (non-interacting) Bose gas behave so differently.]

[Remarks: John C. Slater made important contributions to the understanding of matter
(atoms, molecules, solids) using quantum mechanics. He wrote several classics textbooks.
See Quantum Theory of Atomic Structure (2 volumes), Quantum Theory of Matter, Quantum
Theory of Molecules and Solids (2 volumes) all by Slater. There are other books on Mechanics
and Electromagnetism. Slater was the Physics Department Chairman of MIT from 1930-1950
and built it up to what we know it now.]

SQ24 Hydrogen atom’s “Electric Dipole Matrix element” for transitions between n = 1 and n = 2
states

We will soon see that a perturbation term Ĥ ′(r, t), which is in principle depending on time and
spatial coordinates r, is responsible for inducing (stimulating) a transition between atomic
states. When a system is initially in an eigenstate ψinitial, only Ĥ ′ can take the system
away from ψinitial. Thus (Ĥ ′ψinitial) has a part that is not the initial state. The probability
amplitude of finding the system in another eigenstate ψfinal after a time t that Ĥ ′ has been

applied to the system is given by the projection of Ĥ ′ψinitial onto ψfinal, i.e.,

af (t) ∝
∫
ψ∗final(r) Ĥ ′ ψinitial(r) d3r (3)

We focus here on the spatial integral. For Atom-Light interaction, the most important mech-
anism is the interaction between the electric dipole moment ~µel and the electric field ~E in EM
field. Thus, Ĥ ′ = −~µel · ~E = −~µel · ~E0 cosωt. It follows from Eq. (3) that

af (t) ∝
[∫

ψ∗final(r) ~µel ψinitial(r) d3r

]
· ~E (4)

The integral [. . .] in Eq. (4) is key to understand selection rules under the electric dipole
mechanism (also called E1 transitions in atomic physics and spectroscopy). It is the “electric
dipole matrix element”, as it is labelled by two indices (the initial and final states).

In the special case of a single electron (e.g. hydrogen atom), ~µel = −e~r. A transition from
an initial (state 1) to a final state (state 2) occurs with a probability amplitude proportional
to a spatial integral given by

a2(t) ∝ rfinal,initial =

∫
ψ∗final(r) r ψinitial(r) d3r , (5)
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where r = ~r. In general, the integral is handled numerically for atoms and molecules. This
is the “position matrix element” that determines a2(t). The probability of a transition from
state 1 to state 2 after Ĥ ′ is applied for a time t is |a2(t)|2.
For the hydrogen atom, the integral can be evaluated analytically. This integral plays
an important role for stimulated processes AND spontaneous emission, as well as setting
selection rules. We encountered such integrals in a previous problem on atomic polarizability
of the hydrogen atom.

(a) Let’s consider transitions in a hydrogen atom. By inspecting the integral

a2(t) ∝ r2s,1s ≡
∫
ψ∗2s(r) ~r ψ1s(r) d3r =

∫
ψ∗200(r) r ψ100(r) d3r (6)

that would determine a transition between 1s and 2s states, show that the integral
vanishes and thus the transition is forbidden (not allowed) by the electric dipole mech-
anism.

(b) For hydrogen atom, the transition between 1s and 2p is allowed. In this case, the integral
that matters is

a2(t) ∝ r2p,1s ≡
∫
ψ∗2p(r) r ψ1s(r) d3r (7)

Recall that there are several 2p states, labelled by (n = 2, ` = 1,m`) withm` = +1, 0,−1.
So let’s be concrete. Consider the transition between the 1s ground state and 2p state
of m` = +1 for which the angular part is Y11(θ, φ). Thus, ψ2,1,+1(r) is the final state
and ψ1,0,0(r) is the initial state.

(i) In Eq. (7), the integral is a vector because r is a vector. Explicitly, writing

r = xx̂+ yŷ + zẑ = r sin θ cosφ x̂+ r sin θ sinφ ŷ + r cos θ ẑ , (8)

evaluate the integral in Eq. (7). It is important to note that the answer is a
vector and in general complex. [TA: Give the answer in Bohr radius.]

(ii) For (stimulated) absorption, consider an external field ~E = E ẑ, i.e., the incident
light is linearly polarized in z-direction (so the propagating direction is not along
z.). The perturbative term in the Hamiltonian Ĥ ′ = −~µel · ~E implies that it is the
ẑ-component of r2p,1s that matters. Discuss the condition for the component z2p,1s
to be non-zero. Hence, argue that such a linearly polarized light cannot stimulate
an absorption from ψ1,0,0(r) to ψ2,1,+1(r).

(iii) Now consider circularly polarized light. Let the propagation direction be the z-
direction. From EM theory, its electric field is on the x-y plane. In particular, a
circularly polarized light with its polarization specified by e+ ∝ (x̂ + iŷ) has its
electric field rotating with time at a fixed point in space (note that there is an time
factor e−iωt in the field that gives the rotating behavior). Now let’s do QM with
Eq. (7) for transition from (100) to (2, 1,+1) state. Show that such a circularly
polarized light can stimulate a transition between ψ1,0,0(r) and ψ2,1,+1(r) by
working out Eq. (7).

[Implication: Skillfully manipulating atoms using circularly polarized light can selectively
induce transitions and thus put atoms into a particular excited state. For example,
techniques in cold atom physics (cooling atoms down to about ∼ 10 nano-Kelvin) also
use circularly polarized light to induce selected transitions.]
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