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In Honor

In honor of Sik-Yum Lee
whose work is well known in Structural Equation Modeling, but he has also worked on
factor models in finance.

Bayesian Analysis of the Factor Model with Finance Applications,
Quantitative Finance, 2007, with Wai-Yin Poon and Xin-Yuan Song

My talk is also about a factor model for financial asset returns.
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Quick Tour of COMFORT: Research

COMFORT: COmmon Market Factor
nOn–Gaussian ReTurn Model
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(and Cryptocurrencies)  
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Quick Tour of COMFORT: What it Does, How it Works

We maintain the benefits of the IID Multivariate Normal framework (estimation speed,
tractability of the portfolio distribution), but deliver a superior, tractable (multivariate
density) forecast.

This requires:

1 using a non-Gaussian distribution with tractable portfolio distribution,

2 new parallel, multi-step, and iterative ML estimation (EM algorithm) for the possibly
hundreds of assets,

3 dynamic dependency structure (to capture “usual” volatility periods and periods
with relatively high volatility and the associated high contagion),

4 addressing the multivariate GARCH problem (parametrization too large to estimate
for more than a handful of assets), and

5 introduction of a Common Market Factor (a univariate latent random variable
common to all stocks). This is motivated next.
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Quick Tour of COMFORT: Common Market Factor G

Returns across assets clearly have commonality in their volatility. This can be judiciously
exploited. Here, the 30 DJIA stock returns, overlaid.
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Quick Tour of COMFORT: Common Market Factor G

There are now two factors driving volatility: Persistence from GARCH, and the latent
univariate “news” or “shock” process. Here, Merck:
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Quick Tour of COMFORT: Comparison of Correlation Dynamics
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KO: Coca-Cola; CSCO: Cisco; CAT: Caterpillar; IBM: International Business Machines; INTC: Intel; AXP: American Express;
GE: General Electric; BAC: Bank of America; MRK: Merck & Co; C: Citygroup; VZ: Verizon Communications; T: AT&T
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Extension to COMFORT-PCA

Extension to COMFORT-PCA
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Motivation (1/6)

Interest in Financial Systemic Risk Measures

Systemic risk refers to risk of several market participants suffering severe losses
simultaneously [Benoit et al., 2017].
Following the global financial crisis 2008-2009 interest in measures of systemic financial
risk grew considerably.

⇒ Policy makers, regulators, risk managers and investors want to detect critical risk
concentrations in financial markets and to anticipate potential crises.

Plethora of measures for systemic risk in literature: According to recent survey
articles several hundred measures and indicators have been proposed. Highly active
research field in academia, regulatory and financial institutions. Some examples:

Contagion models: [Ait-Sahalia et al., 2015], [Ait-Sahalia and Hurd, 2016],
[Dungey et al., 2018], [Nasini et al., 2019]

Network models: [Acemoglu et al., 2015], [Battiston et al., 2012b],
[Battiston et al., 2012a], [Cont et al., 2010],
[Diebold and Yılmaz, 2009, Diebold and Yılmaz, 2014],
[Haldane and May, 2011],[Lenzu and Tedeschi, 2012], [Nier et al., 2007]
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Motivation (2/6)

Correlation risk: [Chiang et al., 2007], [Farhi and Tirole, 2012], [Lehar, 2005]

Tail-risk-based measures: [Acharya et al., 2010], [Brownlees and Engle, 2016],
[Brunnermeier and Cheridito, 2019], [Hautsch et al., 2014],

Liquidity risk: [Brunnermeier et al., 2013], [Cifuentes et al., 2005]

Survey articles: [Benoit et al., 2017], [Bisias et al., 2012],
[Brunnermeier and Oehmke, 2013], [De Bandt and Hartmann, 2000],
[Fouque and Langsam, 2013], [Hansen, 2013], [Silva et al., 2017]

Problematic: Many measures are not easy to replicate and apply due to ...

data not widely available (e.g., OTC transactions, interbank market, options)

data not timely available (e.g., macro and fundamental data)

require advanced statistical models (e.g., conditional tail risk measures, regime
switching or BCP models).
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Motivation (3/6)

Simpler Approach: Statistical systemic risk measure based on widely available market
data (e.g., daily stock or index returns)

⇒ Absorption Ratio: Prominent risk indicator based on PCA decomposition of
covariance matrix of set of asset returns; introduced in [Kritzman et al., 2011] and
[Billio et al., 2012]; further investigated in [Giglio et al., 2016], [Zheng et al., 2012] and
[Ren and Zhou, 2014].

Absorption Ratio (AR) measures the interconnectedness of assets by considering the
fraction of total variance explained by a fixed (small) number of eigenvectors:

ARt =

∑`
k=1 ξk,t∑K
k=1 ξk,t

, ξ1,t ≥ · · · ≥ ξK ,t

are the ordered eigenvalues, 1 ≤ ` < K for K the number of assets, ` ∈ N fixed.

(In our model, in the example below, we use K = 30 stocks of the DJIA, and take ` = 3.)

⇒ AR measures risk concentration in markets; assets being tightly coupled seen as sign
of fragility of the market; volatility shocks propagate faster when few factors (leading
eigenvalues) explain the majority of market volatility.
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Motivation (4/6)

Computation of AR in literature (and practice) uses sample covariance estimator on
rolling windows and assumes constant covariances (and AR) per window, i.e.,

covariance matrix, PCA decomposition and AR sensitive to outliers,

no actual out-of-sample forecast of AR (constant),

dynamics and reactivity of AR determined by sample size.

[Kritzman et al., 2011] suggests EWMA covariance estimator: improves dynamic
evolution of AR but depends on half-life parameter (less severe).

Multivariate GARCH: parsimonious MGARCH models such as the CCC model
[Bollerslev, 1990], the DCC model [Engle, 2002], VC model [Tse and Tsui, 2002] or
RSDC model [Pelletier, 2006] proven successful to model and forecast conditional
covariance matrices.

Application of (M)GARCH to risk forecasting (VaR, ES) shows (co)variance dynamics are
essential for precise risk prediction and MGARCH model well suitable for this; see
[Bauwens et al., 2006], [Berkowitz and O’Brien, 2002], [Kuester et al., 2006],
[McAleer and Da Veiga, 2008], [Santos et al., 2013] among others.
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Motivation (5/6)

More recently: MGARCH models applied to OOS portfolio optimization, e.g.,
[Engle and Colacito, 2006], [Luo, 2016], [Paolella and Polak, 2015b],
[Santos and Moura, 2014]. Improved covariance forecasts improve performance (OOS
variance, returns, Sharpe ratio) compared to IID models (at cost of higher turnover).

⇒ Application of MGARCH to AR modeling and forecasting could be worthwhile...

However...

1 Most MGARCH models are based on a Gaussian distribution (thin tails, equal tails,
elliptical).

2 The CCC model takes conditional correlations as constant.

3 The popular DCC model (with two additional parameters no matter the dimension
K) is too inflexible for large systems. The general version is infeasible in high
dimensions (and hard to say if predictions are better).

4 A (non-Gaussian) MGARCH model that addresses eigenvalue dynamics directly
seems natural for AR modeling.

Paolella, Polak, Walker Risk Prediction with non-Gaussian OGARCH models Hong Kong, December 2019 13 / 43



Motivation (6/6)

O-GARCH Model: Orthogonal GARCH model from
[Alexander and Chibumba, 1996, Alexander, 2001, Alexander, 2002], [Ding, 1994]
assumes univariate GARCH dynamics for a few leading eigenvalues; while the remaining
eigenvalues are set to zero for dimension reduction. PCA extracts the most important
components of covariance dynamics. Large time-varying covariance matrix is
approximated by a small number of GARCH processes.

COMFORT Model: [Paolella and Polak, 2015a, Paolella and Polak, 2016] model
conditional distribution Yt |Φt−1 by MGHyp distribution (semi-heavy-tailed,
non-elliptical, mean-variance mixture) and employ CCC covariance matrix with univariate
GARCH(1,1) scales; superior out-of-sample density and risk prediction.

⇓

Goal: Build OGARCH model capturing all stylized facts of asset returns: excess kurtosis,
skewness (non-ellipticity), volatility clustering, joint extremes, time varying correlations;
model amenable for estimation via maximum-likelihood.
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The COMFORT-PCA Model (1/4)

Definition: The COMFORT-PCA Model [Paolella et al., 2019]

Let the conditional return distribution admit the mean-variance mixture representation

Yt |Φt−1
d
=µ+ γGt + εt , (1)

εt =
√
GtH

1/2
t Zt , (2)

where Gt ∼ GIG(λ, χ, ψ) univariate i.i.d., Zt ∼ Nk(0, Ik) i.i.d., µ = (µ1, . . . , µK )′ ∈ RK ,
γ = (γ1, . . . , γK )′ ∈ RK and Ht ∈ RK×K a positive definite, symmetric, conditional
dispersion matrix of the form

Ht = PΞtP
′, (3)

with P orthogonal matrix of eigenvectors and Ξt the diagonal matrix of eigenvalues
Ξt = diag (ξ1,t , . . . , ξK ,t). The unique positive semidefinite square root of Ht is

H1/2
t = Pdiag

(√
ξ1,t , . . . ,

√
ξK ,t

)
P′ = PΞ1/2

t P′, (4)

i.e., the conditional return distribution has representation

Yt |Φt−1
d
= µ+ γGt +

√
GtPΞ1/2

t P′Zt . (5)
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The COMFORT-PCA Model (2/4)

Definition: The COMFORT-PCA Model [Paolella et al., 2019] (continued)

For ξk,t , k = 1, . . . ,K eigenvalues sorted by decreasing order only subset of eigenvalues is
modeled as time-varying by assuming GARCH(1,1) dynamics for l largest eigenvalues,
1 ≤ l ≤ K , i.e.

ξk,t = ωk + αkε
2
k,t−1 + βkξk,t−1, for k = 1, . . . , l , (6)

where εt = Yt − µ− γGt are de-meaned returns, εt = P′εt their principal components.

Remaining K − l eigenvalues assumed time-invariant

ξk,t = ξk , for k = l + 1, . . . ,K . (7)

New model is called COMFORT-PCA: As in the COMFORT model, the conditional
return distributions is modeled with MGHyp; but now PCA used for the
eigendecomposition to identify the driving components of covariance dynamics
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The COMFORT-PCA Model (3/4)

Remarks:

Allows dynamics of covariance matrix to be driven by (small) set of statistical
factors; allows for idiosyncratic shocks not captured by these factors

We set no eigenvalues equal to zero (no dimension reduction), dispersion matrix
Ht = PΞtP

′ required invertible for estimation algorithm (and portfolio optimization)

Complexity reduction by reducing the number of cond. heteroscedastic factors.
Same idea already in [Lanne and Saikkonen, 2007] (these authors set constant
eigenvalues equal to one); show this allows to interpret their model (and ours) as a
factor GARCH model in which cond. heteroscedasticity is due to l common factors

Conditional distribution of Yt given realization Gt = g of mixing variable is
multivariate Gaussian with mean vector µ+ γg and covariance matrix gHt ; without
conditioning on Gt the matrix Ht is not the covariance matrix, hence Ht called
conditional dispersion matrix
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The COMFORT-PCA Model (4/4)

Remarks (continued):

Normalized (Gaussianized) de-meaned returns et = (yt − µ− γgt)/
√
gt follow

multivariate Gaussian distribution with mean 0 and covariance matrix Ht

Robustness: PCA decomposition is not applied to covariance matrix of (possibly
heavy-tailed) returns; instead to covariance matrix of et which is estimated by

Σ̂ê =
1

T

T∑
t=1

êt ê
′
t , where êt = (yt − µ̂− γ̂ĝt)/

√
ĝt

⇒ Our method can be regarded as ”robust” PCA (resulting eigenvalues less
sensitive to outliers in return series)

Mean-variance mixture of MGHyp lends itself to estimation via EM-algorithm, see
[Dempster et al., 1977], [Embrechts et al., 2015] or [Paolella and Polak, 2015a]
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Estimation via ECME Algorithm (1/3)

Notation: Let θM = [µ′,γ′]′, θGE = [ω1, . . . , ωl , α1, . . . , αl , β1, . . . , βl ]
′,

θCE = [vec(P), ξl+1, . . . , ξK ], θD = [λ, χ, ψ]′, and θ = [θM,θGE,θCE,θD]′.

Complete log-likelihood: logLY,G (θ) = logLY|G (θM,θGE,θCE) + logLG (θD),

where logLY|G is multivariate Gaussian log-likelihood. Further splitting

logLY,G (θ) = logLY|G (θM) + logLY|G (θGE,θCE) + logLG (θD), (8)

with

logLY|G (θM) = −1

2

K∑
k=1

T∑
t=1

e2
k,t , (9)

and

logLY|G (θGE,θCE) =− 1

2

l∑
k=1

T∑
t=1

(
log(2πgt) + log(ξk,t) + g−1

t

ε2
k,t

ξk,t
− e2

k,t

)
(10)

− 1

2

K∑
k=l+1

T∑
t=1

(
log(2πgt) + log(ξk) + g−1

t

ε2
k,t

ξk
− e2

k,t

)
. (11)
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Estimation via ECME Algorithm (2/3)

E-step: Calculate expectation of Gt given Φt and parameter estimates θ̂, where

Gt | Φt , θ̂ ∼ GIG
(
λ̂∗, χ̂∗t , ψ̂

∗
t

)
, (12)

with λ̂∗ = λ̂−K/2, χ̂∗t = χ̂+ (yt − µ̂)′ P̂Ξ̂
−1

t P̂′ (yt − µ̂) and ψ̂∗t = ψ̂ + γ̂′P̂Ξ̂
−1

t P̂′γ̂, see
[Paolella, 2007], [Paolella, 2015]. Then use the moment formula for GIG [Paolella, 2007,
Eq.9.18] to computed filtered values ĝt and ĝ−1

t of the latent mixing realizations gt and
g−1
t .

CM1-step: Update θ̂M, θ̂CE, θ̂GE consecutively:

(a) Estimate θ̂M by computing

θ̂M = arg max
θM

logLY|G(θM). (13)

Done in closed form by weighted least squares: let X = [1, ĝ] and ĝ stacked vector of
filtered ĝt . Further W = diag(ĝ−1

1 , . . . , ĝ−1
T ) and Y ∈ RT×K matrix of stacked return

vectors, then WLS estimator for β = [µ,γ]′ ∈ R2×K is given by

β̂ =
(
X
′WX

)−1
X
′WY . (14)
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Estimation via ECME Algorithm (3/3)

(b) To compute θ̂CE perform eigendecomposition of

Σ̂ê =
1

T

T∑
t=1

êt ê
′
t , (15)

where êt = (yt − µ̂− γ̂ĝt)/
√
ĝt . Store eigenvectors in matrix P̂ and constant eigenvalues

ξ̂k , k = l + 1, . . . ,K , thus have θ̂CE = [vec(P̂), ξ̂l+1, . . . , ξ̂K ].
Note: number l of dynamic eigenvalues is chosen a priori (tuning parameter, see below)

(c) Compute θ̂GE by maximizing GARCH terms in (10) given estimates θ̂CE, i.e.

θ̂GE = arg max
θV

logLY|G (θGE, θ̂CE). (16)

For this compute estimated principal components ε̂t = P̂′ε̂t (corresponds to data rotation
in classical PCA). Solve this by parallel estimation of l independent univariate GARCH.

CM2-step: Given θ̂M, θ̂SD, θ̂V from the CM1-step above, update θ̂D by maximizing not
the complete but incomplete log-likelihood (”either”), i.e. compute

θ̂D = arg max
θD

log LY

(
θD | θ̂M, θ̂SD, θ̂V

)
. (17)

Iterate these E-, CM1 and CM2-steps until convergence.
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Empirical Application: Absorption Ratio Modeling (1/4)

Data: daily (log)-returns from DJIA stocks (K=30), 02.01.1990-30.12.2016;
rolling-windows size of d = 1000 days and d = 180 days
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Figure: One-day ahead Absorption Ratio forecasts; based on PCA of covariance matrix

The basic AR is highly dependent on the length of the lookback period: barely any
dynamics when too long; sensitive and erratic fluctuations when too short.
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Empirical Application: Absorption Ratio Modeling and Forecasting (2/4)
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Figure: One-day ahead Absorption Ratio forecasts; based on PCA of covariance matrix
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Empirical Application: Absorption Ratio Modeling (3/4)

AR dynamics from Gaussian OGARCH and COMFORT-PCA much more realistic
due to direct modeling of eigenvalues and thereby AR dynamics via univariate
GARCH.

Gaussian OGARCH leads to overly erratic AR, sensitive to small market shocks

AR dynamics from GARCH-CCC and -DCC less intuitive: values in 1990s higher
than in financial crisis

Fundamental critique of AR as systemic risk measure: Due to covariance matrix input
the AR is largely driven by general level of market volatility, i.e., information content over
pure market volatility is small.
⇒ Compute AR from PCA of correlation instead of covariance matrix

AR forecasts based on correlation matrix from GARCH-CCC and -DCC barely move
and lack any information about systemic risk level. DCC correlations appear to be
inflexible when the number of assets is not small!

AR forecasts based on correlation matrix from OGARCH and COMFORT-PCA
appear much more suitable; able to detect the Asia crisis, Rubel crisis, Dotcom
bubble, financial crisis as well as the Euro crisis.

The MGHyp-based model more robust and delivers smooth forecast of systemic risk
levels.
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Empirical Application: Absorption Ratio Modeling and Forecasting (4/4)
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Figure: One-day ahead Absorption Ratio forecasts; based on PCA of correlation matrix
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Further Applications: Correlation Modeling and Forecasting
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Figure: Median one-day ahead correlation forecasts

The dynamics of the correlation forecasts of the COMFORT-PCA and MN-OGARCH
show well-known effect of increasing correlations during market distress. GARCH-CCC
and -DCC delivers similar median correlations which underreact the market dynamics.
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Further Applications: Reducing Portfolio Turnover (1/7)

Evolution of portfolio weights for rolling window exercise of MN-DCC model
(min-var portfolio with daily rebalancing, trading period May 2003 - December 2014)
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MN-DCC: Sharpe ratio 0.6053, max. drawdown 32.20%, average daily turnover: 22.82%
1/N : Sharpe ratio 0.5949, max. drawdown 42.11%,average daily turnover: 0.30%
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Further Applications: Reducing Portfolio Turnover (2/7)

Using MGARCH models, such as CCC, DCC, VC, RSDC, for the covariance matrix
estimate in portfolio optimization imply massive turnover and transaction costs.

MGARCH covariance dynamic better approximate the true DGP and often translate into
better portfolio performance (without fees) but at cost of vastly increased rebalancing
due to sensitivity of the optimal portfolio w.r.t covariance parameters

⇒ MGARCH often infeasible in practice due to excessive portfolio rebalancing!
Various approaches to reduce rebalancing and transaction costs:

1 Shrinkage of covariance matrix towards constant target

2 Regularization of objective function with rebalancing penalty term

3 Ex-post shrinkage of portfolio weights towards target portfolio which is constant
over time

⇒ Want to tackle problem from different angle: Employ COMFORT-PCA model
with reduced number of dynamic eigenvalues to restrict covariance fluctuation to
most relevant factors to reduce portfolio turnover

Paolella, Polak, Walker Risk Prediction with non-Gaussian OGARCH models Hong Kong, December 2019 28 / 43



Further Applications: Reducing Portfolio Turnover (3/7)

Data set: daily stock returns from DJ30, 02.01.1990 - 30.12.2016, rolling windows
exercise with n = 1250 data points and T = 5556 OOS steps.

MGHyp distribution difficult to fit due to flat likelihood in GIG parameters (λ, χ, ψ);
hence consider two special cases: multivariate Student-t (semi-heavy-tailed) and Laplace
distribution (thin-tailed)

Portfolio optimization methodology: min-ES strategy, for each rolling window portfolio
weights computed from the one-day-ahead density prediction; using convex optimization
formulation of [?], [?]. Results for min-variance strategy similar

Portfolio Turnover:

TO =
1

T

T∑
t=1

K∑
d=1

|wd,t+1 − wd,t+ |, (18)

with wd,t+ the proportion of wealth held in asset d at time t + 1 just before rebalancing

wk,t+ =
αk,tPk,t+1∑d
k=1 αk,tPk,t+1

, (19)

where αk,t is amount of stocks k corresponding to weight wk,t , and Pk,t+1 is price of
asset k at time t + 1.
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Further Applications: Reducing Portfolio Turnover (4/7)

Proportional Transaction Costs: Let κ > 0 quantify level of proportional transaction
cost (e.g. k = 0.001 or k = 0.005), then returns net of transaction costs are

(100 + RN
P,t+1|t) =

(
1− κ

K∑
d=1

|wd,t+1 − wd,t+ |

)
(100 + RG

P,t+1|t), (20)

Influence of number l of leading eigenvalues with GARCH dynamics:

l Daily Return Volatility Total Return Max. Drawdown Avg. Turnover Sharpe Sortino Starr(ES99%)

30 0.0384 0.9425 213.5774 21.2207 6.4834 0.6476 0.9292 0.0106
25 0.0382 0.9425 211.9708 21.5866 5.5432 0.6430 0.9237 0.0106
20 0.0386 0.9468 214.4396 22.3996 4.4133 0.6472 0.9302 0.0106
15 0.0394 0.9474 218.8961 21.5303 3.7944 0.6603 0.9509 0.0109
10 0.0391 0.9452 217.3208 20.3243 2.8667 0.6570 0.9452 0.0108
9 0.0383 0.9460 212.5288 20.6456 2.8204 0.6420 0.9232 0.0106
8 0.0384 0.9455 213.0744 20.9306 2.7845 0.6440 0.9263 0.0106
7 0.0383 0.9454 212.8472 20.7989 2.6817 0.6434 0.9252 0.0106
6 0.0382 0.9455 211.9914 20.6813 2.4963 0.6407 0.9211 0.0105
5 0.0383 0.9460 212.7041 20.7174 2.3875 0.6425 0.9238 0.0106
4 0.0385 0.9456 213.9012 20.2677 2.2695 0.6464 0.9296 0.0106
3 0.0388 0.9449 215.5154 20.2202 2.1920 0.6518 0.9375 0.0107
2 0.0390 0.9446 216.4007 20.1937 2.3219 0.6547 0.9416 0.0108
1 0.0385 0.9438 215.2387 20.3512 1.9996 0.6505 0.9376 0.0107

1/N 0.0439 1.1595 255.1055 27.5709 0.2501 0.6017 0.8538 0.0094

Table: Comparison of min-ES portfolios at 99%-ES, MLap-PCA with varying l

⇒ Turnover decreasing in l ; without transaction costs max. SR attained for l = 15 (not
l = 30), i.e. modeling GARCH to small eigenvalues detrimental
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Further Applications: Reducing Portfolio Turnover (5/7)

Sharpe ratios net of transaction cots of MLap-PCA model for varying l and κ:

l 0bp 1bp 5bp 10bp 20bp

30 0.6476 0.6367 0.5930 0.5384 0.4291
25 0.6430 0.6336 0.5963 0.5496 0.4562
20 0.6472 0.6398 0.6102 0.5732 0.4992
15 0.6603 0.6539 0.6285 0.5968 0.5332
10 0.6570 0.6522 0.6329 0.6088 0.5607
9 0.6420 0.6373 0.6184 0.5947 0.5473
8 0.6440 0.6393 0.6206 0.5973 0.5505
7 0.6434 0.6389 0.6209 0.5983 0.5533
6 0.6407 0.6365 0.6197 0.5988 0.5568
5 0.6425 0.6385 0.6225 0.6024 0.5623
4 0.6464 0.6426 0.6273 0.6083 0.5701
3 0.6518 0.6481 0.6334 0.6150 0.5781
2 0.6547 0.6508 0.6351 0.6156 0.5765
1 0.6505 0.6482 0.6350 0.6182 0.5845

1/N 0.6017 0.6012 0.5995 0.5974 0.5931

Table: Sharpe ratios net of transaction costs, min-ES portfolios at 99%-ES; MLap-PCA with
varying l , under κ = 0, 1, 5, 10 and 20 basis point prop. transaction costs

⇒ Optimal l depends on level κ of transaction costs; for realistic levels of 3− 5 basis
points l = 3 or l = 2 is optimal; only under extreme transaction costs is passive 1/N
strategy superior!
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Further Applications: Reducing Portfolio Turnover (6/7)

Comparison of portfolio performance of various models without transaction costs:

Model Daily Return Volatility Total Return Max. Drawdown Avg. Turnover Sharpe Sortino Starr(ES99%)

Mt-CCC 0.0431 0.9162 239.6066 17.7935 16.1237 0.7473 1.0626 0.0121
MLap-CCC 0.0432 0.9211 239.8098 19.3594 15.7349 0.7440 1.0563 0.0119
MAt-CCC 0.0416 0.9170 230.9833 20.9945 16.6828 0.7198 1.0209 0.0117
MALap-CCC 0.0413 0.9236 229.4366 23.7504 15.7016 0.7099 1.0052 0.0114
MN-DCC 0.0406 0.9254 225.6403 18.7262 22.5582 0.6968 0.9888 0.0112
MN-CCC 0.0402 0.9255 223.0400 18.7493 22.6754 0.6887 0.9777 0.0111
MN-RSDC 0.0396 0.9228 219.8195 20.3186 25.7596 0.6807 0.9645 0.0110
MLap-PCA 0.0388 0.9449 215.5154 20.2202 2.1920 0.6518 0.9375 0.0107
MALap-PCA 0.0386 0.9450 214.2952 20.1422 2.2730 0.6481 0.9320 0.0107
Mt-PCA 0.0383 0.9473 212.5364 21.2037 2.7326 0.6412 0.9223 0.0106
MAt-PCA 0.0376 0.9478 208.6284 21.1836 3.0937 0.6291 0.9046 0.0104
MALap-IID 0.0362 0.9230 201.2739 24.4040 2.1359 0.6231 0.8893 0.0103
MN-PCA 0.0342 0.9296 189.9685 29.1132 6.3259 0.5840 0.8302 0.0095

1/N 0.0439 1.1595 255.1055 27.5709 0.2501 0.6017 0.8538 0.0094

Table: min-ES portfolios at 99%-ES, all orthogonal COMFORT models are equipped with l = 3
eigenvalues having GARCH dynamics

⇒ Mt-CCC from COMFORT class has highest risk-adjusted returns, lowest drawdown
and volatility, but turnover is rather high; Gaussian models have highest turnover;
COMFORT-PCA easily outperforms MN-PCA
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Further Applications: Reducing Portfolio Turnover (7/7)

Sharpe ratios net of transaction cots for various models and levels of κ:

Model 0bp 1bp 5bp 10bp 20bp

Mt-CCC 0.7473 0.7194 0.6076 0.4678 0.1883
MLap-CCC 0.7440 0.7169 0.6083 0.4726 0.2013
MAt-CCC 0.7198 0.6909 0.5754 0.4309 0.1420
MALap-CCC 0.7099 0.6829 0.5749 0.4398 0.1699
MN-DCC 0.6968 0.6581 0.5033 0.3097 -0.0774
MN-CCC 0.6887 0.6498 0.4942 0.2996 -0.0893
MN-RSDC 0.6807 0.6364 0.4591 0.2374 -0.2057
MLap-PCA 0.6518 0.6481 0.6334 0.6150 0.5781
MALap-PCA 0.6481 0.6442 0.6290 0.6099 0.5717
Mt-PCA 0.6412 0.6366 0.6182 0.5953 0.5494
MAt-PCA 0.6291 0.6239 0.6032 0.5772 0.5254
MALap-IID 0.6231 0.6195 0.6048 0.5864 0.5497
MN-PCA 0.5840 0.5732 0.5299 0.4758 0.3676

1/N 0.6017 0.6012 0.5995 0.5974 0.5931

Table: Comparison of Sharpe ratios, min-ES portfolios at 99%-ES, all orthogonal COMFORT
models are equipped with l = 3 eigenvalues having GARCH dynamics

⇒ Optimal model depends heavily on level of transaction costs; for realistic levels of
transaction costs the COMFORT-PCA outperforms all models and the passive 1/N
strategy; for extreme transaction costs all Gaussian models (except PCA) have negative
Sharpe ratios due to huge turnover
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Conclusion: Insights from COMFORT-PCA

Presented new MGHyp-based OGARCH model called COMFORT-PCA: cond.
return distribution accounts for excess kurtosis and asymmetry; a few leading
eigenvalues equipped with GARCH(1,1) dynamics

PCA decomposition not performed on covariance matrix of returns but of the
normalized, de-meaned residuals, hence providing more robustness to outliers

Model estimated via ECME-algorithm; PCA- and GARCH-estimation in each
iteration

Applications: Modeling and forecasting of systemic financial risks; correlations;
portfolio optimization under transaction costs

Absorption Ratio (AR) as popular, simple measure of systemic risk shows much
improved dynamics when i.i.d. normal is replaced COMFORT-PCA model; MN-CCC
and -DCC too inflexible and not robust to shocks; AR based on cond. correlations
less affected by market risk (volatility)

Optimal model depends on application: for AR modeling on the asset universe, for
portfolio optimization on level of transaction fees
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