

Useful Unix Commands Cheat Sheet

The Chinese University of Hong Kong

SIGSC Training (Fall 2016)

FILE AND DIRECTORY

pwd Return path to current directory.

ls List directories and files here.

ls dir List directories and files in a directory.

ls -d */ List the name of all subdirectory.

ls -a List all files including hidden files.

ls -lh
List including more data in readable

format.

cd dir Change directory.

cd Go to home directory.

pushd dir
Save current directory (push onto

stack) and go to dir.

popd dir
Return (pop from the stack) to last

saved directory.

dirs List all saved directories (the stack).

touch file Create an empty file.

mkdir dir Create an empty directory.

ln -s file Create a soft link here to file/dir

mv dir1 dir2 Move or renames a file.

cp file1 file2 Copy file1 to file2.

cp -r dir1 dir2
Copy dir1 to dir2 including

subdirectories.

rmdir dir Remove an empty directory.

rm file Remove a file.

rm -r dir
Remove a directory and its

subdirectories and files.

rm -f file Remove a file, suppress all warning.

find dir -name

pattern

Search for file name matching pattern

in dir.

md5sum file

Calculate MD5 checksum of file, there

are other algorithms too, e.g. variaous

SHA.

READ MANUAL

help Display bash help.

help cmd Show usage of built-in commands.

man cmd Show usage of most commands.

info cmd Show more info about command.

FILE ATTRIBUTES

chmod +x file Set execute permission to file.

chmod -x file Unset execute permission to file.

chmod IJK file Set permission denoted by IJK to

file. I, J, K = 0 to 7, to calculate,

sum all permissions, read=4,

write=2, execute=1.

I is for user, J is for group, K is for

everyone.

chmod -R IJK

dir

Set permission denoted by IJK to

dir and all subdirectories and files.

chown -R

user:group dir

Change the ownership of dir and all

subdirectories and files.

COMPRESSION

tar -cf file.tar dir Group files.

tar -xf file.tar Ungroup files.

tar -zcf file.tar.gz dir Group and compress files.

tar -zxf file.tar.gz Extract and ungroup files.

TEXT VIEWING

less file View a file.

less -N file View file with line numbers.

less -S file View file, wrap long lines.

cat file Print file to STDOUT.

tac file
Print file to STDOUT in reverse

line order.

head file Print first lines from a file.

head -n 5 file Print first 5 lines from a file.

tail file Print last lines from a file.

tail -n 5 file Print last 5 lines from a file.

grep str file Display lines containing str in

file.

grep -c 'pattern' file Count lines matching a pattern.

sort file Sort lines from a file.

sort -u file Sort and return unique lines.

uniq -c file Filter adjacent repeated lines.

wc file Count file for line, word and

characters.

wc -l file Count number of line for file.

diff file1 file2
Show difference between file1

and file2.

cut -f 1,3 file
Retrieve data from 1,3 columns

in a tab-delimited file.

REMOTE ACCESS

wget url Download url.

ssh user@server SSH to a server.

scp -r local_dir

user@server:remote_dir

Copy file from local to

remote computer.

scp -r

user@server:remote_dir

local_dir

Copy file from remote to

local computer.

TEXT EDITING

paste file1 file2 Join file1 and file2 line by line.

truncate -s size file Remove contents in file.

nano -S file Nano editor with smooth

scrolling.

JOB CONTROL

ps aux Show running processes.

pkill -u user Terminate all process for user.

pkill cmd Terminate a process with SIGTERM.

pkill -9 cmd Terminate cmd with SIGKILL.

top View top CPU using processes.

nohup cmd
Run cmd disregarding the hangup

signal.

cmd & Run cmd in background.

jobs Show running jobs.

fg N Bring job N to foreground.

bg Bring job N to background.

MISC

echo string Print the string to STDOUT

printf format-

str args
C like printf

date Display current date time information.

time cmd Time the execution of cmd

sleep N Wait for N secs.

watch cmd Repeatedly execute cmd every 2s and

display result.

which cmd
Display the resolved command

directory.

seq a b incr Generate a list of number starting

from a to b incremented by incr.

yes Keep saying yes

yes str Keep saying str, usually used to say

"no".

USEFUL FILES

Descriptor 0 STDIN

Descriptor 1 STDOUT

Descriptor 2 STDERR

/dev/null A file that discard information

/dev/ A file that provides 0x00

/dev/urandom A file that provide random bytes

~ Home directory

~+ Directory pointed by PWD

~- Directory pointed by OLDPWD

. Current directory

.. Parent directory

/ Root directory

~/.profile
A shell-independent initialization file,

not preferred.

~/.bash_profile
Configure environment and

preferences for login shell

~/.bashrc
Configure environment and

preferences for interactive shell

~/.bash_login Bash script to execute on login

~/.bash_logout Bash script to execute before logout

~/.bash_history Bash command history

QUOTING

'string' Represents a string exactly as is.

"string"
Represents a string exactly, except

substitution and escaping

$var Replace by value of var

${var}
Sometimes you need this for replacing

by value of var

$(expr) Evaluate expr and substitute the result

`expr` Evaluate expr and substitute the result

$[arithmetic-

expr]

Evaluate arithmetic-expr and substitute

value

DATA STRUCTURES

declare -r var=val
Declare and initialize a read-

only var.

readonly var=val
Declare and initialize a read-

only var.

declare -x var=val
Declare and initialize an

exported var.

export var=val
Declare and initialize an

exported var.

declare -i var Declare a numeric var.

declare -p var Print the declaration of var.

declare -p Print all vars.

declare -xp Print all exported vars.

export Print all exported vars.

declare -xr Print all read only vars.

readonly Print all read only vars.

declare -a arr=(val1

val2)

Declare and initialize an array

named arr.

${arr[idx]} Access an element by idx.

${arr[*]} List all elements.

${!arr[*]} List all indexes that are set.

arr[idx]=val
Add or overwrite an element

by idx

unset arr[idx] Delete an element by idx.

unset arr Delete the array.

declare -A

map=([key]=val)

Declare and initialize a hash

table named var.

${map[key]} Access an element by key.

${map[*]} Access all values.

${!map[*]} Access all keys.

map[key]=val
Add or overwrite an entry by

key.

unset map[key] Delete an entry by key.

unset map Delete the map.

IO REDIRECTION

cmd > file Write stdout to file.

cmd >> file Append stdout to file.

cmd | tee file
Duplicate and write stdout to

file.

cmd | tee -a file
Duplicate and append stdout to

file.

cmd 2>&1 Redirect stderr to stdout.

cmd1 | cmd2 Pipe output of cmd1 to cmd2.

cmd < file Read file as stdin.

cmd << eof-str

text

eof-str

Use multiline text as stdin,

terminated by the specific

sequence eof-str.

cmd <<< str Use string as stdin.

CONDITIONS

[! expr] True if expr is false.

[(expr)]
Overriding precedence with

bracket.

[expr1 -a expr2]
True if both expr1 and expr2 are

true.

[expr1 -o expr2]
True if either expr1 and expr2 are

true.

CONDITIONS (LEXICOGRAPHIC)

[-z str] str is zero length.

test -z str
str is zero length, test command works

for all other conditions too.

[-n str] str is non-zero length.

[str1 = str2] Str1 is the same as str2.

[str1 \> str2] Str1 sorts lexicographically after str2.

[str1 \< str2]
Str1 sorts lexicographically before

str2.

CONDITIONS (ARITHMETIC)

[arg1 -eq arg2] Arg1 is equal to arg2.

[arg1 -ne arg2] Arg1 is not equal to arg2.

[arg1 -lt arg2] Arg1 is less than to arg2.

[arg1 -le arg2] Arg1 is less than or equal to arg2.

[arg1 -gt arg2] Arg1 is greater than to arg2.

[arg1 -ge arg2]
Arg1 is greater than or equal to

arg2.

CONDITIONS (FILE ATTRIBUTES)

[-a file] File exists.

[-e file] File exists.

[-d file] File is directory.

[-f file] File is regular file.

[-h file] File is symbolic link.

[-s file] File size greater than 0.

[-r file] File can be read.

[-w file] File can be written.

[-x file] File can be executed.

[-O file] File is owned by effective user.

[-G file] File is owned by effective group.

[file1 -nt file2] File1 is newer than file2.

[file1 -ot file2] File1 is older than file2.

USEFUL, POWERFUL (NOT NOW)

patch

vi

sed

awk

expect

CONTROL FLOW

if cond; then cmds; fi If-then statement, fi means "end if".

if cond

then cmds;

fi

If-then statement, new-line instead of ';' is also a valid syntax.

if cond; then cmds1; else cmds2; fi If-then-else statement, fi means "end if".

if cond1; then cmds1; elif cond2; then cmds2;

else cmds3; fi

If-then-elseif-else statement, elif means "else if", more than 1 elif

is also valid.

case $var in 1) cmds1;; 2) cmds2;; esac switch-case statement based on value contained in var.

case `expr` in 1) cmds1;; 2) cmds2;; esac switch-case statement with value evaluated from expr.

case $var in 1) cmds1;; *) default-cmd;; esac switch-case statement with default case handled by *).

for var in list; do cmds; done For every element in list, execute cmds with var set to the element.

for var in `expr`; do cmds; done For loop with list value evaluated from expr.

for var in list; do cmds; break; done For loop with break.

for var in list; do cmds; continue; done For loop with continue.

while cond; do cmds; done Execute cmds while cond is true.

while cond; do cmds; continue; done While loop with continue.

while cond; do cmds; break; done While loop with break.

until cond; do cmds; done Execute cmds while cond is false. Break and continue also applies.

while cond1; do while cond2; do cmds; continue

2; done; done
Continue on outer nested loop

while cond1; do while cond2; do cmds; break 2;

done; done
Break outer nested loop

BASH SCRIPTING

#!/bin/bash

#This is comment, below is your script

foo(){

 local x=1;

 # This function is not implemented

 return $x;

}

exit `foo`

Sample bash script

exit val Specify a return code for a bash script, default return 0 if omitted.

$? Return code from last command

$0 Script name

$N The N-th argument, only work for N=1-9

${N} The N-th argument, this form must be used for N>9

$# Number of argument

shift N
Discard the first N arguments and shift the remaining argument, $0 is not

affected.

function func { cmds; } Declare a function named func containing cmds.

func() { cmds; } Function declaration without using keyword function.

local var=val Declare and initialize function-scoped var.

return val Specify a return code for a function, default return 0 if omitted.

