
PHYS 5130 Problem Set 5 Solution

1.

Solution: For clarity, each of the five single particle state is referred to by a number.
Energy Number

0 (First) 1
0 (Second) 2
ε (First) 3
ε (Second) 4

2ε 5

(a) Then, the possible two particles states are as follow (Particle 1, Particle 2): (1, 1), (1, 2), (1, 3), (1, 4),
(1, 5), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (4, 1), (4, 2), (4, 3), (4, 4),
(4, 5), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5). Each state contributes e−β(Eparticle1+Eparticle2) to the partition
function. Performing this summation, one obtains

Zdistinct = 4 + 8e−βε + 8e−2βε + 4e−3βε + e−4βε. (1)

Alternatively, equation 2 in the problem could be used to obtain the partition function. One could first
note that the two particles could take on the following total energy 0, ε, 2ε, 3ε, 4ε. For E = 0, both
particles have to be in either state 1 or 2. So there are W = C2

1 ×C2
1 = 4 two particles states with energy

E = 0. Similarly, for E = ε, one particle has to be in either 1 or 2 state, and the other has to be in either
3 or 4 state, moreover, as the two particles are distinguishable, there is an extra factor of 2 ((0, 3), (3, 0)
being distinct states). so W = 2×C2

1 ×C2
1 = 8. For E = 2ε, either each particle contributes ε of energy,

or one particle contributes 2ε of energy alone. Therefore, W = C2
1 ×C2

1 +C1
1 ×C2

1 × 2 = 8. For E = 3ε,
W = C2

1 × C1
1 × 2 = 4. For E = 4ε, W = C1

1 × C1
1 = 1.

Then, using equation 2 provided in the question, one again obtains

Zdistinct = 4 + 8e−βε + 8e−2βε + 4e−3βε + e−4βε. (2)

For a single particle, the partition function is simply given by

zsp = 1 + 1 + e−βε + e−βε + e−2βε (3)

= 2 + 2e−βε + e−2βε. (4)

Then,

z2sp = (2 + 2e−βε + e−2βε)2 (5)

= 4 + 8e−βε + 8e−2βε + 4e−3βε + e−4βε (6)

= Zdistinct. (7)

Therefore, Zdistinct could be factorized into zs2sp.

(b) For two identical fermions, the possible two particle states are ((State of one particle, State of the other
particle)): (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5), (4, 5). One then obtains

Zfermion = 1 + 4e−βε + 3e−2βε + 2e−3βε. (8)

(c) For two identical bosons, the possible two particle states are ((State of one particle, State of another
particle)): (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 2), (2, 3), (2, 4), (2, 5), (3, 3), (3, 4), (3, 5), (4, 4), (4,
5), (5, 5). One then obtains

Zboson = 3 + 4e−βε + 5e−2βε + 2e−3βε + e−4βε. (9)

(d) As Zboson concerns two identical boson, states like (1, 2), (2, 1) in the distinguishable particles case which
are considered to be two states are counted only once in the identical boson case.

(e) By direct calculation, one could see that 1
2!Zdistinct 6= Zboson. In distinguishable case, states like (1, 2),

(2, 1) (Particle 1, Particle 2) are considered as two different states, but in indistinguishable case, the two
are considered the same and counted once only, so such states in distingishable case are overcounted in
indistinguishable case. In this case, the result is not correct as states which are not overcounted (Like
(1, 1)) are also reduced by a factor of 2.
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(f) If now the two particles are not allowed to occupy the same single particle state, one would have to
remove states like (1, 1) from the counting, and recompute the partition functions, which are given by

Zdistinct = 2 + 8e−βε + 6e−2βε + 4e−3βε, (10)

Zfermion remains unchanged.

Zboson = 1 + 4e−βε + 3e−2βε + 2e−3βε. (11)

One could then see that 1
2!Zdistinct = Zfermion = Zboson.

2.

Solution:

(a)

Two particle state (State of one particle, State of the other particle) Occupation Numbers Energy
(1, 2) (1, 1, 0, 0, 0) 0ε
(1, 3) (1, 0, 1, 0, 0) 1ε
(1, 4) (1, 0, 0, 1, 0) 1ε
(1, 5) (1, 0, 0, 0, 1) 2ε
(2, 3) (0, 1, 1, 0, 0) 1ε
(2, 4) (0, 1, 0, 1, 0) 1ε
(2, 5) (0, 1, 0, 0, 1) 2ε
(3, 4) (0, 0, 1, 1, 0) 2ε
(3, 5) (0, 0, 1, 0, 1) 3ε
(4, 5) (0, 0, 0, 1, 1) 3ε

So there is 1 state with E = 0, 4 states with E = 1ε, 3 states with E = 2ε, 2 states with E = 3ε.

Using equation 2 in the question, one then obtains

Zfermion = 1 + 4e−βε + 3e−2βε + 2e−3βε (12)

as expected.

(b)

Two particle state (State of one particle, State of the other particle) Occupation Numbers Energy
(1, 1) (2, 0, 0, 0, 0) 0ε
(1, 2) (1, 1, 0, 0, 0) 0ε
(1, 3) (1, 0, 1, 0, 0) 1ε
(1, 4) (1, 0, 0, 1, 0) 1ε
(1, 5) (1, 0, 0, 0, 1) 2ε
(2, 2) (0, 2, 0, 0, 0) 0ε
(2, 3) (0, 1, 1, 0, 0) 1ε
(2, 4) (0, 1, 0, 1, 0) 1ε
(2, 5) (0, 1, 0, 0, 1) 2ε
(3, 3) (0, 0, 2, 0, 0) 2ε
(3, 4) (0, 0, 1, 1, 0) 2ε
(3, 5) (0, 0, 1, 0, 1) 3ε
(4, 4) (0, 0, 0, 2, 0) 2ε
(4, 5) (0, 0, 0, 1, 1) 3ε
(5, 5) (0, 0, 0, 0, 2) 4ε

So there are 3 states with E = 0, 4 states with E = ε, 5 states with E = 2ε, 2 states with E = 3ε, 1 state
with E = 4ε. One could then obtain

Zboson = 3 + 4e−βε + 5e−2βε + 2e−3βε + e−4βε (13)

as expected.

3.
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Solution:

(a)

Z =
∑

AllStates

e−βEtot (14)

=

3∑
i=1

e−βEi . . .

3∑
i=1

e−βEi︸ ︷︷ ︸
N

(15)

=

N∏ 3∑
i=1

e−βEi (16)

= zN (17)

(b)

< E > = kT 2 ∂ lnZ

∂T
(18)

= kT 2N
∂ ln z

∂T
(19)

= kT 2N
(
eβε + 1 + e−βε

)−1 (− ε

kT 2
eβε +

ε

kT 2
e−βε

)
(20)

= −NgµBB
e
gµBB

kT − e−
gµBB

kT

e
gµBB

kT + 1 + e−
gµBB

kT

(21)

(c) For each particle, it could be in one of the three states each with probability given by e−βεi

z , where εi is
the energy associated with a single particle state, moreover each state corresponds to a particular value
of magnetic dipole moment. So the average dipole moment is given by the sum of possible dipole moment
multiplied by its probability, given by

< µz > =
(
gµBe

gµBB

kT + (0)(1) + (−gµB)e−
gµBB

kT

)
(e

gµBB

kT + 1 + e−
gµBB

kT )−1 (22)

= gµB

(
e
gµBB

kT − e−
gµBB

kT

)
(e

gµBB

kT + 1 + e−
gµBB

kT )−1 (23)

(d)

M =
N

V
< µz > (24)

=
gµBN

V

(
e
gµBB

kT − e−
gµBB

kT

)
(e

gµBB

kT + 1 + e−
gµBB

kT )−1 (25)

(e) When the magnetic field strength is high, and temperature is low such that gµBB >> kT , M →
NgµB
V

e
gµBB
kT

e
gµBB
kT

= NgµB
V . On the other hand, when gµBB << kT , e

gµBB

kT ≈ 1+ gµBB
kT . ThenM → 2N(gµB)2B

3V kT .

Therefore, susceptibility is inversely proportional to T , which is the Curie’s law.

4.

Solution:

(a) Given D = Aω, one could make use of the property that there are only 2N oscillation modes in the
system to obtain

2N =

∫ ωD

0

Aωdω (26)

=
1

2
Aω2

D (27)

Therefore A = 4N
ω2
D

.
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Moreover,

EGS =
1

2
~
∫ ωD

0

Dωdω (28)

=
2N~
ω2
D

∫ ωD

0

ω2dω (29)

=
2

3
N~ωD (30)

So, ωD = 3EGS
2N~ .

(b)

< E > = EGS +

∫ ωD

0

D
~ω

eβ~ω − 1
dω (31)

= EGS +
4N~
ω2
D

∫ ωD

0

ω2

eβ~ω − 1
dω (32)

= EGS +
4N

ω2
Dβ

3~2

∫ β~ωD

0

(β~ω)2

eβ~ω − 1
dβ~ω (33)

= EGS +
4Nk3T 3

ω2
D~2

∫ β~ωD

0

x2

ex − 1
dx (34)

At low temperature, β~ωD →∞, so the expression could be approximated by

< E > = EGS +
4Nk3T 3

ω2
D~2

∫ ∞
0

x2

ex − 1
dx (35)

= EGS +
4Nk3T 3

ω2
D~2

(2.404) (36)

As C = ∂E
∂T , one obtains

C = EGS +
12Nk3T 2

ω2
D~2

(2.404) (37)

So heat capacity is proportional to T 2.

(c) Given that D ∝ ωd−1, so D = Aωd−1, where A is a constant to be determined, one could follow the
treatment above and obtain

< E > = EGS +A~
∫ ωD

0

ωd

eβ~ω − 1
dω (38)

= EGS +
A

βd+1~d

∫ β~ωD

0

(β~ω)d

eβ~ω − 1
dβ~ω (39)

= EGS +
Akd+1T d+1

~d

∫ β~ωD

0

xd

ex − 1
dx (40)

At low temperature, the expression could be approximated by

< E >= EGS +
Akd+1T d+1

~d

∫ ∞
0

xd

ex − 1
dx (41)

As C = ∂E
∂T , one could see that C ∝ T d.
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