
PHYS 5130 Problem Set 4 Solution

1.

Solution: The number of microstates is CNn C
N ′

n = N !N ′!
(N−n)!(N ′−n)!(n!)2 . Moreover, as creating a defect requires

ε of energy, so number of defects n = E
ε .

As S = k lnW , entropy of the system could then be computed.

S = k lnW (1)

≈ k (N lnN +N ′ lnN ′ − (N − n) ln (N − n)− (N ′ − n) ln (N ′ − n)− 2n ln (n)) (2)

One could then obtain 1
T .

1

T
=
∂S

∂E
(3)

=
∂S

∂n

∂n

∂E
(4)

=
k

ε
(ln (N − n) + 1 + ln (N ′ − n) + 1− 2− 2 ln (n)) (5)

=
k

ε
ln

((
N

n
− 1

)(
N ′

n
− 1

))
(6)

Rewriting this expression, one could then obtain n(T ).

1

T
=
k

ε
ln

((
N

n
− 1

)(
N ′

n
− 1

))
(7)

ε

kT
= ln

((
N

n
− 1

)(
N ′

n
− 1

))
(8)

e(
ε
kT ) =

(
N

n
− 1

)(
N ′

n
− 1

)
(9)

e−( ε
kT ) =

((
N

n
− 1

)(
N ′

n
− 1

))−1
(10)

e−( ε
kT ) =

n2

(N − n)(N ′ − n)
(11)

As the number of defects n is typically much smaller than N or N ′, the above expression could be approximated

as e−( ε
kT ) = n2

NN ′ , so n =
√
N ′Ne−

ε
2kT .

The expression above could also be exactly solved by rewriting it into a quadratic equation of n.

n2(1− e−( ε
kT )) + n(N ′ +N)e−( ε

kT ) −N ′Ne−( ε
kT ) = 0 (12)

Solving this quadratic equation and discarding the negative root, one obtains

n =

√
(N −N ′)2 + 4N ′Ne(

ε
kT ) − (N +N ′)

2
(
e(

ε
kT ) − 1

) (13)

At low temperature, ε >> kT , then the above expression is approximately,

n ≈

√
4N ′Ne(

ε
kT )

2e(
ε
kT )

(14)

=
√
N ′Ne−

ε
2kT (15)
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2.

Solution:

(a) Given energy E = −NµB+n(2µB), one could find the number of particles in the higher energy state. As
each transition from lower energy state results in energy change of εup − εlow = 2µB, one could identify
n as the number of spins that are in the higher energy state.

Therefore, the number of microstates is given by CNn .

(b) As S = k lnW , one obtains

S = k ln
(
CNn
)

(16)

= k ln

(
N !

(N − n)!n!

)
(17)

≈ k(N lnN − (N − n) ln (N − n)− n lnn) (18)
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(c) As n = n(E), one could write

1

T
=
∂S

∂E
(19)

=
∂S

∂E

∂E

∂n
(20)

=
1

2µB

(
k ln

(
N

n
− 1

))
(21)

2µB

kT
=

(
k ln

(
N

n
− 1

))
(22)

N

n
− 1 = e

2µB
kT (23)

n =
N

e
2µB
kT + 1

(24)

Using n = E+NµB
2µB , one could then obtain

E = 2µB
N

e
2µB
kT + 1

−NµB = −NµB tanh

(
µB

kT

)
(25)

Then, heat capacity C = ∂E
∂T is given by

C =
∂E

∂T
(26)

= −2µB
Ne

2µB
kT(

e
2µB
kT + 1

)2 (−2µB

kT 2

)
(27)

= Nk

(
2µB

kT

)2
e

2µB
kT(

e
2µB
kT + 1

)2 (28)

= Nk

(
µB

kT

)2

sech2

(
µB

kT

)
(29)
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In this problem, the temperature scale is set by the 2µB term, when kT >> 2µB, the temperature can
be considered high. Conversely, the temperature is low when kT << 2µB.

At high temperature, with kT >> 2µB, e
2µB
kT → 1. Therefore,

E ≈ −N (µB)2

kT
→ 0 (30)

and

C ≈ Nk
(
µB

kT

)2

→ 0. (31)

At low temperature,

E ≈ 2µBe−
2µB
kT −NµB → −NµB (32)

and

C ≈ Nk
(

2µB

kT

)2

e−
2µB
kT → 0. (33)
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(d) From the expression for E obtained in part c, one could see that E < 0, for E > 0, one needs T < 0.

(e) Depending on the energy state, each particle contributes either µ or −µ to the total dipole moment, the
net dipole moment is therefore given by M = µ((N − n)− n) = µ(N − 2n). Using the result from part
c, one obtains

M = Nµ

(
1− 2

e
2µB
kT + 1

)
= Nµ tanh

(
µB

kT

)
(34)

(f) When T →∞, e
2µB
kT → 1, so M → 0.

(g)

χ ∝ ∂M

∂B
(35)

= 2Nµ
e

2µB
kT(

e
2µB
kT + 1

)2 2µ

kT
(36)

=
4Nµ2

kT

e
2µB
kT(

e
2µB
kT + 1

)2 (37)

=
Nµ2

kT
sech2

(
µB

kT

)
(38)

At high temperature, e
2µB
kT → 1, therefore

χ ∝ Nµ2

kT
, (39)

So, χ ∝ 1
T , which is the Curie’s Law.
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3.

Solution: First, one might define the following quantities, p̃ = p√
2m

and x̃ =
√

mω2

2 x. Then the Hamiltonian

of each oscillator could be expressed as h = p̃2 + q̃2.

One could then compute the total number of states with energy less than E, given by

W< = h−3N
∫
dp1

∫
dp2 . . .

∫
dx1

∫
dx2 . . .

∫
dx3N︸ ︷︷ ︸∑

i hi≤E

(40)

By change of variables, dp =
√

2mdp̃ and dx =
√

2
mω2 dx̃. The expression can be rewritten into

W< = h−3N (2m)
3
2N

(
2

mω2

) 3
2N
∫
dp̃1 . . .

∫
dx̃3N︸ ︷︷ ︸∑

i hi≤E

(41)

=
23N

ω3Nh3N

∫
dp̃1 . . .

∫
dx̃3N︸ ︷︷ ︸∑

i hi≤E

(42)

As E =
∑3N
i h =

∑3N
i p̃2 + x̃2, one could identify the integration above as finding the volume of a 6N

dimensional hypersphere with radius
√
E. Therefore, using the expression for volume of a N dimensional

hypersphere provided in the lecture notes, one could obtain

W< =
23Nπ3N

ω3Nh3N3N !
E3N (43)

Then, the density of state could be obtained from

W =
∂W<

∂E
(44)

=
23Nπ3N

ω3Nh3N (3N − 1)!
E3N−1 (45)

Then, one could obtain entropy of the system

S = k ln (W∆E) (46)

≈ 3Nk lnE − 3Nk ln

(
hω

2π

)
− 3Nk ln (3N) + 3Nk (47)

Using T−1 = ∂S
∂E , one could obtain

E = 3NkT (48)

Therefore, one obtains C = 3Nk, which is the same result as that obtained for quantum oscillator at high
temperature.
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4.

Solution: Before the two subsystems are placed in thermal contact, the number of accessible microstates is

given by C
(3−1+2)
2 × C(5−1+14)

14 = 18360, therefore the total entropy of the system is 9.818k.

After the two system are brought into thermal contact, energy exchange is allowed between the two subsystem,
therefore the 16ε of energy could be shared among the two subsystems.

Distribution (E1, E2) W1 W2 Total number of microstates (W1 ×W2)
(0, 16) 1 4845 4845
(1,15) 3 3876 11628
(2,14) 6 3060 18360
(3,13) 10 2380 23800
(4,12) 15 1820 27300
(5,11) 21 1365 28665
(6,10) 28 1001 28028
(7,9) 36 715 25740
(8,8) 45 495 22275
(9,7) 55 330 18150
(10,6) 66 210 13860
(11,5) 78 126 9828
(12,4) 91 70 6370
(13,3) 105 35 3675
(14,2) 120 15 1800
(15,1) 136 5 680
(16,0) 153 1 153

So the total number of accessible microstates is 245157, and entropy of the system is 12.41k, which is higher
than initial state. Therefore, the process is irreversible.

The dominating distribution is E1 = 5, E2 = 11, which gives E1

N1−1 ≈
E2

N2−1 . Initially, the two subsystems are
out of equilibrium, with the second system “having higher temperature”, after the two systems are allowed
to equilibrate, the two subsystems have “roughly the same temperature”.

It can be seen that states like (4, 12), (5, 11), (6, 10) contributes similar number of mircostates, the relatively
large spread of distribution is due to the small size of the system. As the system size increases, the relatively
spread of distribution decreases.

One could see that with total energy being constant, the W1 increases with E1, whereas W2 decreases with
E1. So under equilibrium condition, with S = k ln (W1W2) being maximum, the most probable distribution
is determined by ∂ lnW1

∂E1
= ∂ lnW2

∂E2
.
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