PHYS 5130 Problem Set 3 Solution

Solution:

(a) By definition, the efficiency of a heat engine is
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Moreover, as stated in the question, Q.+ = 750J and n = 0.25, so
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One then obtains Q;, = 1000 J.
(b) The Clausius inequality states that ¢ % < 0. For this particular process,
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Solution: For heating under constant pressure,
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For phase transition, the temperature is constant, so entropy change is simply given by
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Therefore, one might separate the heating of ice at 200 K into steam at 400K into 5 processes, and add up the
entropy change for each part to obtain the total entropy change, which is given by
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Solution:

(a) Using the equation of state pV = nRT, one could first obtain T4, given by
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= 15
47 1000R (15)
= 240.5K (16)
As state A, B are linked by an adiabat,
P,V = PgVy, (17)
where v = g for monatomic gas. Therefore,
PAV;
Py = —A (18)
Vg
= 3.15 x 10° Pa (19)

With both Vp, Pg known, T can be computed from the equation of state, given by Tp = 151.5K.
As state C and state B are linked by an isobaric process, Po = Pg. Therefore, making use of the equation of
state again, one obtains T¢ = 75.8 K.

(b) As path AB is an adiabat, Q@ 4p = 0, and with no heat exchange, ASsp = 0 as well. Work done on the system
Wap is given by
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(¢) As the process is isobaric,
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Work done is simply given by

Wge = —Pp(Ve — V) (32)
= 630kJ (33)

(d) As the path CA represents an isochoric process, AV =0, so Wga = 0.
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= 2055kJ (36)
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(e) Efficiency is defined by
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where W, is net work done by the system (=W, ), and Q;y is the amount of heat input into the system (Sum
of all positive @ terms). Therefore,
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Moreover, Wiy = Qin — Qout-
Solution:
(a) From (p + ’{/iza) (V —nb) = nRT, one could obtain
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Substituting back p and (%)v back into the expression for (g—g) 1> one obtains
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which depends on a only. Under constant temperature, as volume increases, the intermolecular attraction
between molecules (characterized by a) decreases, leading to higher U.

For an ideal gas,

(3), - (%), -
=p-p (50)
=0, (51)

as expected.

(b) For u(T,V), one could write the total differential as
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Using the result from part a, one obtains

0
du = ¢, dT + <T (ag)v —p) dv. (54)
As shown in part a, (%)T = (T (g—p) — p) = 0, so u cannot be written as a function of T only, therefore
u=u(v,T).

(c) Reusing the results from problem set 1, one could obtain
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From the lecture notes,
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Using the cyclic rule, one could write
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and also
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Solution: As C, =T (g—%)p and Cy =T (a )V.
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As an illustration, one could apply the obtained result to an ideal gas. For an ideal gas,
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For kg, one needs to find partial derivative under constraint of constant entropy. One therefore could use the
equation for an adiabat PV7 = C. Performing partial derivative on both sides, one obtain
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Therefore, kg = % One could then obtain g—“; = % = =y as expected.
Solution:

(a) To check that the proposed expression for entropy is indeed extensive, one could scale the extensive variables
by a and see whether S(aU, aV,aN) = aS(U,V,N).
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So the proposed expression for entropy is indeed extensive.

(b) From the given exact differential, one could identify
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Similarly, one could identify £ =
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(¢) From part b, one obtains pV = NkT and U = %N kT, therefore the system is just a system of monatomic ideal

gas.
(d) One could identify y = —T (%)U,V' Explicitly, one obtains
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