
PHYS 5130 Problem Set 3 Solution

1.

Solution:

(a) By definition, the efficiency of a heat engine is

η =
Wby

Qin
=
Qin −Qout

Qin
(1)

Moreover, as stated in the question, Qout = 750 J and η = 0.25, so

Qin − 750

Qin
= 0.25 (2)

750

Qin
= 0.75. (3)

One then obtains Qin = 1000 J.

(b) The Clausius inequality states that
¸
d̄Q
T ≤ 0. For this particular process,

˛
d̄Q

T
=

Qin
THot

− Qout
TCold

(4)

=
1000

300
− 750

150
(5)

= −5

3
JK−1 (6)

< 0. (7)

2.

Solution: For heating under constant pressure,

∆S =

ˆ
d̄Q

T
(8)

=

ˆ
cvdT

T
(9)

= cv ln

(
Tf
Ti

)
(10)

For phase transition, the temperature is constant, so entropy change is simply given by

∆S =
∆Q

T
(11)

=
l

T
(12)

Therefore, one might separate the heating of ice at 200 K into steam at 400 K into 5 processes, and add up the
entropy change for each part to obtain the total entropy change, which is given by

∆S = c(ice)p ln

(
273

200

)
+
lSL
273

+ c(water)p ln

(
373

273

)
+
lLV
373

+ c(steam)
p ln

(
400

373

)
(13)

= 9.38 kJK−1 (14)

1



3.

Solution:

(a) Using the equation of state pV = nRT , one could first obtain TA, given by

TA =
PAVA
1000R

(15)

= 240.5 K (16)

As state A, B are linked by an adiabat,

PAV
γ
A = PBV

γ
B , (17)

where γ = 5
3 for monatomic gas. Therefore,

PB =
PAV

5
3

A

V
5
3

B

(18)

= 3.15× 105 Pa (19)

With both VB , PB known, TB can be computed from the equation of state, given by TB = 151.5 K.

As state C and state B are linked by an isobaric process, PC = PB . Therefore, making use of the equation of
state again, one obtains TC = 75.8 K.

(b) As path AB is an adiabat, QAB = 0, and with no heat exchange, ∆SAB = 0 as well. Work done on the system
WAB is given by

WAB = −
ˆ
pdV (20)

= −C
ˆ VB

VA

V −γdV (21)

= − C

1− γ
(V 1−γ
B − V 1−γ

A ) (22)

=
3

2
PAV

5
3

A (V
− 2

3

B − V − 2
3

A ) (23)

= −1110 kJ (24)

(c) As the process is isobaric,

QBC = Cp∆T (25)

= 1000 ∗
(

5

2
R

)
(TC − TB) (26)

= −1575 kJ (27)

∆SBC =

ˆ
d̄Q

T
dT (28)

= Cp

ˆ TC

TB

dT

T
(29)

= Cp ln

(
TC
TB

)
(30)

= −14.4 kJK−1 (31)

Work done is simply given by

WBC = −PB(VC − VB) (32)

= 630 kJ (33)

(d) As the path CA represents an isochoric process, ∆V = 0, so WCA = 0.

QCA = Cv∆T (34)

= 1000

(
3

2
R

)
(TA − TC) (35)

= 2055 kJ (36)



∆SCA =

ˆ
d̄Q

T
(37)

= CV

ˆ TA

TC

dT

T
(38)

= 1000

(
3

2
R

)
ln

(
TA
TC

)
(39)

= 14.4 kJK−1 (40)

(e) Efficiency is defined by

η =
Wby

Qin
, (41)

where Wby is net work done by the system (−Wtot), and Qin is the amount of heat input into the system (Sum
of all positive Q terms). Therefore,

η =
−(WAB +WBC)

QCA
(42)

= 0.234 (43)

Moreover, Wby = Qin −Qout.

4.

Solution:

(a) From
(
p+ n2a

V 2

)
(V − nb) = nRT , one could obtain

p =
nRT

V − nb
− n2a

V 2
. (44)

Then,(
∂p

∂T

)
V

=
nR

V − nb
. (45)

Substituting back p and
(
∂p
∂T

)
V

back into the expression for
(
∂U
∂V

)
T

, one obtains(
∂U

∂V

)
T

= T
nR

V − nb
− nRT

V − nb
+
n2a

V 2
(46)

=
n2a

V 2
(47)

=
a

v2
. (48)

which depends on a only. Under constant temperature, as volume increases, the intermolecular attraction
between molecules (characterized by a) decreases, leading to higher U .

For an ideal gas,(
∂U

∂V

)
T

= T

(
∂p

∂T

)
V

− p (49)

= p− p (50)

= 0, (51)

as expected.

(b) For u(T, V ), one could write the total differential as

du =

(
∂u

∂T

)
v

dT +

(
∂u

∂v

)
T

dV (52)

= cvdT +

(
∂u

∂v

)
T

dV. (53)



Using the result from part a, one obtains

du = cvdT +

(
T

(
∂p

∂T

)
v

− p
)
dv. (54)

As shown in part a,
(
∂u
∂v

)
T

=
(
T
(
∂p
∂T

)
v
− p
)
6= 0, so u cannot be written as a function of T only, therefore

u = u(v, T ).

(c) Reusing the results from problem set 1, one could obtain

β =
1

V

(
∂V

∂T

)
p

(55)

=
1

V

nR

p+ n2a
V 2 − 2n2a

V 3 (V − nb)
(56)

=
nR

nRTV
V−nb −

2n2a
V 2 (V − nb)

(57)

=
R

RTv
v−b −

2a
v2 (v − b)

(58)

κ = − 1

V

(
∂V

∂p

)
T

(59)

= − 1

V

nb− V
p+ n2a

V 2 − 2n2a
V 3 (V − nb)

(60)

=
V − nb

nRTV
V−nb −

2n2a
V 2 (V − nb)

(61)

=
v − b

RTv
v−b −

2a
v2 (v − b)

(62)

From the lecture notes,

cp − cv = T

(
∂p

∂T

)
v

(
∂v

∂T

)
p

= Tv
β2

κ
(63)

Then,

cp − cv = Tv
β2

κ
(64)

= Tv
R2

v − b

(
pv +

a

v
− 2a

v2
(v − b)

)−1

(65)

=
TR2

v − b

(
RT

v − b
− 2a

v3
(v − b)

)−1

(66)

= R

(
1− 2a(v − b)2

RTv3

)−1

(67)

5.

Solution: As Cp = T
(
∂S
∂T

)
p

and CV = T
(
∂S
∂T

)
V

.

Cp
CV

=

(
∂S

∂T

)
p

(
∂T

∂S

)
V

(68)

Using the cyclic rule, one could write(
∂S

∂T

)
p

= −
(
∂S

∂p

)
T

(
∂p

∂T

)
S

(69)

and also(
∂T

∂S

)
V

= −
(
∂V

∂S

)
T

(
∂T

∂V

)
S

. (70)



Then,

Cp
CV

=

(
∂S

∂T

)
p

(
∂T

∂S

)
V

(71)

=

(
∂S

∂p

)
T

(
∂p

∂T

)
S

(
∂V

∂S

)
T

(
∂T

∂V

)
S

(72)

=

(
∂S

∂p

)
T

(
∂V

∂S

)
T

(
∂p

∂T

)
S

(
∂T

∂V

)
S

(73)

=

(
∂V

∂p

)
T

(
∂p

∂V

)
S

(74)

=
−V −1

(
∂V
∂p

)
T

−V −1
(
∂V
∂p

)
S

(75)

=
κT
κS
. (76)

As an illustration, one could apply the obtained result to an ideal gas. For an ideal gas,

κT = − 1

V

(
∂V

∂p

)
T

(77)

= − 1

V

(
−nRT

p2

)
(78)

=
1

p
. (79)

For κS , one needs to find partial derivative under constraint of constant entropy. One therefore could use the
equation for an adiabat PV γ = C. Performing partial derivative on both sides, one obtain

V γ + γpV γ−1

(
∂V

∂p

)
S

= 0 (80)(
∂V

∂p

)
S

= − V
γp
. (81)

Therefore, κS = 1
γp . One could then obtain

Cp

CV
= κT

κS
= γ as expected.

6.

Solution:

(a) To check that the proposed expression for entropy is indeed extensive, one could scale the extensive variables
by α and see whether S(αU,αV, αN) = αS(U, V,N).

S(αU,αV, αN) = αNk ln

(
αV

αN

(
mαU

3παN~2

) 3
2

)
+

5

2
αNk (82)

= αS(U, V,N) (83)

So the proposed expression for entropy is indeed extensive.

(b) From the given exact differential, one could identify(
∂S

∂U

)
V,N

=
1

T
. (84)

Therefore,

1

T
=

3

2
NkU−1 (85)

T =
U

3
2Nk

(86)



Similarly, one could identify p
T =

(
∂S
∂V

)
U,N

, and so

p = T

(
∂S

∂V

)
U,N

(87)

= T
Nk

V
(88)

(c) From part b, one obtains pV = NkT and U = 3
2NkT , therefore the system is just a system of monatomic ideal

gas.

(d) One could identify µ = −T
(
∂S
∂N

)
U,V

. Explicitly, one obtains

µ = −T
(
∂S

∂N

)
U,V

(89)

= −T

(
k ln

(
V

N

(
mU

3πN~2

) 3
2

)
− 5

2

Nk

N
+

5

2
k

)
(90)

= −kT ln

(
V

N

(
mU

3πN~2

) 3
2

)
(91)


