
PHYS 5130 Problem Set 2 Solution

1. Solution: To treat this problem, one should note that the problem concerns an ideal gas, which has the following
properties.

• Equation of state: pV = NkT

• Internal energy as a function of temperature only: U = U(T ).

As all three processes concerned have the same endpoints state 1 and state 2, which share the same temperature
T1 and so the same amount of internal energy, the overall change ∆U after each process is 0. Moreover, as ∆U =
Q+W = 0, Q = −W , so overall work done by the system (−W ) equals overall heat flow into the system.

(a) As the process is isothermal, throughout the process, the system has temperature T1. The work done to the
system is given by

W =

∫
−pdV (1)

=

∫ V2

V1

−nRT1
V

dV (2)

= −nRT1 ln
V2
V1

(3)

(4)

So the work done by the system is nRT1 ln V2

V1
, which is also the heat flow into the system.

(b) For the second path, it consists of path B, which is an adiabatic process, and path C, in which no work is done.
For the adiabatic process, there is no heat exchange. Work done to the system is given by

W =

∫
−pdV (5)

= −
∫ V2

V1

P1V
γ
1 V

−γdV (6)

= −P1V
γ
1

1 − γ
(V 1−γ

2 − V 1−γ
1 ) (7)

=
P1V1
γ − 1

((
V2
V1

)1−γ

− 1

)
(8)

For path C, there is no work done, but there is heat exchange, so that the overall ∆U = 0, For the whole

process, Q = −W = −P1V1

γ−1

((
V2

V1

)1−γ
− 1

)
(c) For path D, the work done to the system is simply given by −P1(V2 − V1), and for path E, there is no work

done. So the overall work done by the system and heat flow into the system is −W = P1(V2 − V1) = Q.

2. Solution: The equation of state for van der Waals equation of state is given by(
P +

n2a

V 2

)
(V − nb) = nRT (9)

Rearranging the equation, one could obtain

P =
nRT

V − nb
− n2a

V 2
(10)
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Under an isothermal condition, temperature is a constant. Work done by the system is given by

−W =

∫
pdV (11)

=

∫ V2

V1

(
nRT

V − nb
− n2a

V 2

)
dV (12)

=

(
nRT ln (V − nb) +

n2a

V

) ∣∣∣V2

V1

(13)

= nRT ln

(
V2 − nb

V1 − nb

)
+ n2a

(
V −1
2 − V −1

1

)
(14)

Comparing the ideal gas law and the van der Waals equation, one could observe that when both a and b become 0,
the van der Waals equation becomes the ideal gas law. So, when both a and b are 0, the same result for work done

nRT ln
(
V2

V1

)
as ideal gas is obtained.

3. Solution: In this question, the slope ( ∂P∂V ) of an isotherm and an adiabat are considered. For an isotherm,

pV = nRT. (15)

(
∂PV

∂V

)
T

=

(
∂nRT

∂V

)
T

(16)(
∂P

∂V

)
T

V + P = 0 (17)(
∂P

∂V

)
T

= −P
V

(18)

As both p and V are always positive, ∂P
∂V is negative, so as expected, when volume increases the pressure decreases

(generally). For an adiabat,

PV γ = C. (19)

(
∂PV γ

∂V

)
C

=

(
∂C

∂V

)
C

(20)

γPV γ−1 +

(
∂P

∂V

)
C

V γ = 0 (21)(
∂P

∂V

)
C

=
−γP
V

(22)

Therefore, one also need to known the value of γ, which is determined by the species of the particles (Specific Heat
Capacity / D.o.F) composing the gas. As γ > 1, an adiabat is steeper than an isothermal.

4. Solution: For one mole of monatomic ideal gas, internal energy is given by 3
2RT , so one only needs to find the

temperature to calculate ∆U . As T = PV
R ,

∆U =
3

2
R(Tf − Ti) (23)

=
3

2
P (Vf − Vi) (24)

= 759 kJ (25)

Alternatively, as the process is isobaric so Q = Qp = Cp∆T , W = −p∆V , where Cp is molar specific heat capacity.
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Then,

∆U = Q+W (26)

= Cp∆T − p∆V (27)

=
5

2
R∆T − p∆V (28)

=
5

2
p∆V − p∆V (29)

=
3

2
p (Vf − Vi) (30)

= 759 kJ (31)

5. Solution: As nNA = N , one could first rewrite the van der Waal equation into(
p+

N2a

N2
AV

2

)(
V − Nb

NA

)
= NkT (32)(

p+
ñ2a

N2
A

)(
ñ−1 − b

NA

)
= kT (33)

After expanding the terms and some rearrangement, one could arrive at

p

kT
=

(
ñ−1 − b

NA

)−1

− ñ2a

N2
AkT

(34)

= ñ

(
1 − ñb

NA

)−1

− ñ2a

N2
AkT

(35)

As van der Waals gas is a ‘correction’ to ideal gas in describing real gas, it can be expected that it is applicable to

‘relatively dilute’ gas, so ñb
NA

<< 1. Therefore, to first order,
(

1 − ñb
NA

)−1

≈ 1 + ñb
NA

. Then,

p

kT
≈ ñ

(
1 +

ñb

NA

)
− ñ2a

N2
AkT

(36)

= ñ+ ñ2
(

b

NA
− a

N2
AkT

)
. (37)

One could then identify the second virial coefficient B2 = b
NA

− a
N2

AkT
. Here a arises due to the attraction between

gas molecules, and b arises due to non-zero volume of the molecules. Whereas the contribution of a term to pressure
is negative, since the molecules become ‘stickier’, the contribution of b term is positive as it is more likely for the
molecules to collide. At low temperature, the effect due to a term is stronger, but as temperature increases, the
effect of b term is stronger, since the molecules have more K.E at higher temperature to escape the attraction of
other molecules.

6. Solution:

(a)

H = U + pV (38)

dH = dU + pdV + V dp (39)

= TdS − pdV + pdV + V dp (40)

= TdS + V dp (41)

Under condition of constant pressure, dp = 0, so that dH = TdS = Q. Therefore, ∆H is equal to the heat flow
into the system under constant pressure.

(b) As H = U + pV , under constant pressure, ∆H = ∆U + p∆V , so ∆U = ∆H − p∆V . First, one could covert
1atm and 1L into SI units, 1 atm = 101 325 Pa, and 1 L = 0.001 m3. Then,

∆U = 6.01 kJmol−1 − (101325 ∗ (0.018 − 0.0196) ∗ 0.001) Jmol−1 (42)

= 6.0102 kJmol−1 (43)
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(c) Similar to part b, ∆U = 37.6 kJmol−1.

(d) As internal energy is an intrinsic property of the material, one could identify the change in internal energy
(37.6 kJmol−1) as the energy absorbed in overcoming the intermolecular interaction. Then, the difference
between actual energy absorbed and change in internal energy ∆H − ∆U = p∆V = 3.099 kJmol−1 could be
identified as the work done against the atmosphere.
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