
Department of Physics, The Chinese University of Hong Kong
PHYS 5130 Principles of Thermal and Statistical Physics (M.Sc. in Physics)

Problem Set 7
Due: 9 December 2020 (Wednesday); “T+2” = 11 December 2020 (Friday) (20% discount)
You should submit your work in one PDF file via Blackboard to the appropriate folder no later
than 23:59 on the due date. Late submission before the T+2 due date will be marked with a 20%
discount on the score. Follow Blackboard → Course Contents → Problem Set → Problem Set 7
Submission Folder.
Please work out the steps of the calculations in detail. Discussions among students are highly encouraged,
yet it is expected that we do your homework independently.

This Problem Set is technically closely related to those discussed in Ch.XI and Ch.XII
on Ideal Fermi Gas and Ideal Bose Gas. Basic ideas in handling interacting systems are

also involved. Total 110 Points.

7.0 Reading Assignment. This is a guide to our progress. No need to hand in anything. By
the end of Week 12, we studied ideal Fermi Gas and ideal Bose Gas, using 3D free particles as
the system. We set up the set of general equations governing the physics in any dimensions and
for particles obeying different dispersion relations (embedded in the DOS g(ε)) for both cases.
In Ch.XI, we did the 3D Fermi Gas. The T = 0 physics is the most important, as the Pauli
exclusion rule forces the fermions to fill up single-particle (s.p.) states high up in energy. The
T = 0 physics defines the Fermi Energy EF , which is a high energy scale. Associated with EF

are TF (the Fermi temperature), kF , and vF . We illustrated that for the conduction electrons in
a metal, which was a successful attempt by Sommerfeld to explain much metal physics using the
Fermi Gas idea, the number density N/V ∼ 1022 cm−3 gives a EF ∼ a few eV . Noting that room
temperature corresponds to 1/40 eV , making metal physics in ordinary temperatures (all the way
to its melting) low-temperature physics. We also discussed the low-temperature physics. The
integrals can be done by using the Sommerfeld expansion (which we didn’t provide a proof). At
high temperature, we also found that there is a quantum signature in B2 with its sign signalling
an effective repulsion between the fermions (even they are non-interacting).

In Ch.XII, we did the 3D Bose Gas. For the Bose Gas, the T = 0 physics is trivial but indicative.
We were led to the idea that the form of the DOS g(ε) ∼ ε1/2 in 3D does not account for the
boson in the lowest ε = 0 s.p. state. But this particular state is especially important for bosons,
because all bosons can go into it at T = 0. Therefore, we need to single out the N0 term. We
then discuss the physical picture behind the Bose-Einstein condensation and derived a formula
for Tc. Below Tc, there is a macroscopic population N0 ∼ N in the s.p. ε = 0 state. This is called
the condensate. At high temperature, we also found that there is a quantum signature in B2 with
its sign signalling an effective attraction between the bosons (even they are non-interacting). We
also discussed the very clever physics behind the cooling of atoms and first experiments achieving
BEC. The field has developed into a hot area covering several frontiers in physics.

In Ch.XIII, we outlined how statistical mechanics can systematically handle interaction between
particles. We obtained the first correction term B2(T ) for an interacting gas. It serves the
purposes: (i) that the stat mech formalism is valid for non-interacting and interacting systems,
(ii) interacting systems are hard to handle analytically but approximations can be developed, (iii)
the results backed up the discussions on the high-temperature behavior in ideal Fermi and Bose
gases. The calculation of B2 is also in line with what we get from the van der Waals equation of
state. We also discussed the physics near the critical point within the vdW equation.
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In Ch.XIV, we use ferromagnetism as another example of interacting systems. The Ising model,
including interactions between magnetic dipole moments (often called spin-spin interaction) and
the effect of an external applied magnetic field, serves as the simplest model problem. We develop
the simplest mean-field theory by copying results from paramagnetism, after decoupling the inter-
action terms into an unknown internal magnetic field acting on individual dipole moments. The
idea of self-consistency is discussed. Critical exponents are obtained within the mean-field theory.
At the end, a clever twist on the mean-field theory leads to some profound ideas in physics.

7.1 (24 points) Fermi energy and Fermi temperature.

It was found that the Fermi energy EF ∼ n2/3 for 3D non- relativistic Fermi Gas, where n = N/V
is the particle number density. For metals, n ∼ 1022/cm3 = 1028/m3, giving the Fermi energy
EF being a few eV and therefore room temperature metal physics is low-temperature Fermi gas
physics.

(a) Data books say that sodium has a conduction-electron number density of 2.65× 1022 cm−3.
Taking the conduction electron mass to be the bare electron mass (sometimes in a solid the
mass of an electron is different from the bare electron mass), evaluate the Fermi energy EF

and convert the answer to the Fermi temperature TF .

(b) Given N/V as in part (a), evaluate an average separation between two conduction electrons
in sodium. Also evaluate the temperature T0 such as the thermal de Broglie wavelength
λth(T0) equals the average separation between two electrons. Comment on the orders of
magnitude of TF and T0.

(c) For astronomical purposes, a typical neutron number density is n ∼ 1044 m−3. [Note: use
neutron mass.] Assuming a neutron gas to be a 3D non-relativistic Fermi gas, evaluate the
Fermi energy EF (in eV ), the Fermi wavevector kF (in Å−1), and the Fermi temperature TF
(in Kelvin).

(d) Let’s get back to some solid state physics. In a clean (intrinsic) semiconductor, the valence
band is completely full and the conduction band is completely empty at T = 0. An important
part of the semiconductor industry is to fabricate extremely clean semiconductors and then
make them dirty (called doping) in a controlled way for device applications. In n-type
doping, some electrons are put into the conduction band. Through doping, it becomes
possible to control the number of conduction electrons in the conduction band. This
should be contrasted with the fixed N/V for a given metal (e.g. sodium has a certain
number). In semiconductors, it is possible to get at an electron number density of 1015/cm3

to 1016/cm3, which is a factor 10−6 to 10−7 of that of metals. It will change the Fermi
energy and Fermi temperature. Estimate the Fermi energy and the Fermi temperature TF
for N/V = 1016/cm3.

[Remark: This result is important. For such a very dilute sea of conduction electrons, room
temperature could be high temperature! This actually makes life easier for semiconductor
scientists and engineers, as the gas at high temperature behaves very much like a classical
gas. Technically, µ becomes negative (below the bottom of the conduction band) and it is
only the tail of the Fermi-Dirac distribution at positive energies matters and the tail looks
just like the Maxwell-Boltzmann distribution. Got it! The statistical mechanics we learned
is necessary for doing semiconductor physics.]

7.2 (27 points) T = 0 physics for an ultra-relativistic Fermi gas

We saw the even at T = 0, a 3D non-relativistic Fermi gas has a pressure p ∼ (N/V )5/3 due to the
Pauli exclusion rule. This pressure, called the degenerate pressure, is argued to be the pressure
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due to electrons in dying stars that works against the collapse due to gravity. This is an important
part of astrophysics concerning the life of a star. Its “success” immediately led to the question of
whether the electrons in a star are non-relativistic. Intuition says that they are not. So, a proper
way is to use the dispersion relation ε(p) =

√
c2p2 +m2c4, obtain the s.p. density of states g(ε)

and re-do the relativistic Fermi gas physics. It is not easy due to the complicated form of ε(p).
For those astrophysics fans, see Greiner et al., Thermodynamics and Statistical Mechanics, Ch.14
for a discussion.

Here, you will take on the easier task of an ultra-relativistic Fermi Gas. By that we meant using
the dispersion relation of ε(k) = cp = ch̄k ∼ k. Thus, we have ε(k) ∼ k instead of ε(k) ∼ k2 for
non-relativistic particles.

(a) Using the idea of fitting waves into a L×L×L = V volume, show that the density of states
gultra(ε) is given by

gultra(ε) =
V

π2
1

(ch̄)3
ε2, (1)

where a spin-degeneracy factor of 2 has been included.

(b) At T = 0, the Fermi-Dirac distribution is a step function, where the step is adjusted to
account for the number N of fermions in the volume V . Derive an expression for the Fermi
energy EF . Hence, find the total energy E at T = 0 and find the energy per particle
at T = 0.

(c) Derive a relationship between pV and the total energy E for the ultra-relativistic Fermi gas.
[Hint: It is different from that of a non-relativistic Fermi gas.]

(d) Hence, derive an expression for the pressure at T = 0 and extract how the pressure depends
on the number density N/V .

[Hint: You will find that p ∼ (N/V )? with “?” not being 5/3 as for a non-relativistic Fermi
gas. For those who want to move forward, consider the gravitational pull in a uniform sphere
(star) of volume V and total mass M . In particular, the gravitational pull tends to lower
the volume, but in doing so N/V will increase and thus the pressure will go up to oppose
the gravitational pull. Can you derive an effect from gravity that can be compared with the
fermionic pressure? If so, the question becomes whether there is a critical mass of the star
such that the gravitational pull will win over the fermionic pressure and eventually the star
will collapse.]

7.3 (27 points) Ideal Bose Gas in a 3D harmonic trap

We considered 3D Ideal Bose Gas in which the density of states is calculated from particle-in-
a-box of volume V . We saw that the experimental setup in trapping atoms in magneto-optical
traps usually have a harmonic potential energy form at the place where atoms are trapped. Your
task here is to examine Bose-Einstein condensation for non-interacting bosons trapped in a 3D
isotropic harmonic potential.

[Technically, this is similar to Problem 7.2, i.e., changing the density of states g(ε) and then you
can re-do a problem.]

For non-interacting bosons trapped in a potential energy function of the form

U(x, y, z) =
1

2
mω2(x2 + y2 + z2) , (2)

the single-particle states (after solving the 3D Schrödinger equation) are ψnx,ny ,nz(x, y, z) with
energies given by

εnx,ny ,nz = (nx + ny + nz)h̄ω +
3

2
h̄ω (3)

3



where nx, ny, nz = 0, 1, 2, . . . and the last term 3/2h̄ω is the ground state energy.

For simplicity, we may ignore the ground state energy and write

εnx,ny ,nz = (nx + ny + nz)h̄ω (4)

instead, so that when all the boson go into the s.p. ground state, we regard them to go into the
state of energy ε = 0 instead of ε = 3/2h̄ω.

(a) Derive an expression for the density of states g(ε). [Hint: Note that the allowed values
of (nx, ny, nz) form a uniformly spaced array of dots. Therefore, the tricky part here is to
consider what is the shape of the volume defined by a constant ε in this space formed by nx,
ny, and nz.]

(b) Let there be N bosons in the trap. Obtain an equation that can be solved for the Bose-
Einstein transition temperature Tc for bosons in a 3D harmonic trap. Examine whether an
integral exists or not, and hence derive an expression for Tc. [You may leave an integral
unevaluated in the answer.]

(c) Derive an expression for N0(T ), the number of bosons in the s.p. ground state for T < Tc.

7.4 (16 points) The second virial coefficient B2(T ) for the simplified Lennard-Jones poten-
tial

The second virial coefficient describes the leading term in the deviation from ideal gas behavior.
We introduced it as

p

kT
=
N

V
+B2(T )

(
N

V

)2

+ · · · (5)

In class, we showed that B2(T ) is related to an integral of the inter-particle potential energy
function U(r), i.e.,

B2(T ) = −2π

∫ ∞
0

[e−U(r)/kT − 1]r2dr (6)

Let’s consider a model potential. The Lennard-Jones (or 6-12) potential is a popular inter-particle
potential. The interaction is not strong. In full, it has the form of

U(r) =
c12
r12
− c6
r6

(7)

The first term is the very steep repulsive part that two particles don’t want to get too close to
each other. The second term is a softer attractive part crucial for condensation. This full form is
not easy to handle. So we model the repulsive “12”-part by a hard core and keep the “6”-part.
This leads us to consider a model potential of a hard sphere plus a Lennard-Jones attractive
part, i.e., U(r) =∞ for r < rc, and U(r) = −c6/r6 for r > rc.

Evaluate B2 in terms of c6 and rc. Hence, identify the expressions of a and b that go into the
van der Waals equation of state. [Hint: See class notes on how the positive and negative terms in
B2 get into the van der Waals equation.]

7.5 (16 points) Behavior near the critical point of the van der Waals equation of state

When the temperature, volume and pressure are expressed in units of the critical temperature Tc,
critical volume per mole vc, and critical pressure Pc, i.e., using the reduced quantities PR ≡ P/Pc,
vR ≡ v/vc, and TR = T/Tc, the van der Waals equation becomes(

PR +
3

v2R

)(
vR −

1

3

)
=

8

3
TR (8)
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In this form, the critical point is at TR = 1, PR = 1 and vR = 1.

By studying the behavior of the van der Waals equation about the critical point, extract the
critical behavior relating (a) δvR and δTR, and (b) δpR and δvR, where the quantities are tiny
deviations from the critical point. That is to say, extract the critical exponents β and δ.
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