
Department of Physics, The Chinese University of Hong Kong
PHYS 5130 Principles of Thermal and Statistical Physics (M.Sc. in Physics)

Problem Set 5
Due: 9 November 2020 (Monday); “T+2” = 11 November 2020 (Wednesday) (20% dis-
count)
You should submit your work in one PDF file via Blackboard to the appropriate folder no later
than 23:59 on the due date. Late submission before the T+2 due date will be marked with a 20%
discount on the score. Follow Blackboard → Course Contents → Problem Set → Problem Set 5
Submission Folder.
Please work out the steps of the calculations in detail. Discussions among students are highly encouraged,
yet it is expected that we do your homework independently.

This Problem Set is closed related to discussions in Ch.IX of class notes on the
calculation and applications of the Partition Function. Total 110 Points.

5.0 Reading Assignment. This is a guide to our progress. No need to hand in anything. By the
end of Week 8, we introduced the second method in statistical mechanics. Namely, we consider a
system with fixed N and V , and also with a temperature T that is fixed by a heat bath. There is
no new physics and no new principles. Treating the composite system consisting of the heat bath
and the system as an isolated system and that all microstates are equally probable for an isolated
system at equilibrium, we derived that the probability of finding the system to be in a state
of energy Ei is e−βEi/Z(T, V,N), where Z(T, V,N) is the partition function. We then show
that the microscopic quantity Z(T, V,N) is related to the macroscopic thermodynamic Helmholtz
free energy F (T, V,N) through F (T, V,N) = −kT lnZ(T, V,N). From thermodynamics, we know
that by taking partial differentiations of F , we get S, P , and µ. This calculation scheme is called
the canonical ensemble theory. We set up the theory in its general form, i.e., all the formulas are
applicable to interacting N -particle systems. Of course, we (you) will do examples (problems) on
non-interacting N -particle systems because Z can be evaluated exactly in these cases.

5.1 (36 points) Be very careful about what are being summed up in getting Z

The Partition Function Z(T, V,N) enters the scene of statistical mechanics humbly as a normal-
ization factor. However, it is related to the Helmholtz free energy F (T, V,N) in one step and then
every thermodynamic variable follows. The partition function is given by:

Z(T, V,N) =
∑

all N -particle states i

e−βEi (1)

=
∑

all N -particle levels i

W (Ei, V,N) e−βEi (2)

=

∫
W(E, V,N) e−βEdE (3)

To apply Eq. (1) and Eq. (2), it is important to understand what are being summed up. A way
(not the cleverest way perhaps, but works) is to list clearly the N -particle states (then use Eq. (1))
or list all the energy levels together with the degeneracies that are to be summed over (then use
Eq. (2)). Eq. (3) makes use of the density of N -particle states W(E, V,N) as the energies of
a N -particle system are usually densely packed and a continuum description is necessary and
convenient.
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You must have heard of fermions and bosons, as well as balls of different colors (an example of
distinguishable particles). This problem serves to illustrate that Z will depend on the nature of
the particles, using the simplest possible system of only two particles. The point is that the list
of states to sum over will depend on whether the particles are distinguishable particles, identical
fermions or bosons, i.e., the quantum nature of the particles really matters!

Consider a system of two non-interacting particles. The temperature is T . For such a system,
the standard steps (similar to how atoms are treated approximately in quantum mechanics) are:
solve for the single-particle states and then fill the two particles into the single-particle states
according to some restrictions based on the nature of the particles. Let’s say someone has solved
the allowed energies and wavefunctions of the single-particle problem. Your task is to do the
second step (how to fill the two particles in) and write down the Partition Function. It turned
out that there are only 5 single-particle states and their energies are 0, 0, ε, ε, and 2ε.
That is to say, there are two different single-particle wavefunctions with energy 0, two different
wavefunctions with energy ε and one wavefunction with energy 2ε.

Find the partition function Z for each of the following cases.

(a) Two distinguishable particles. Make a list of all the two-particle states that are to
be summed up in Eq. (1) and find Zdistinct. This case can be thought of having a red particle
and a blue particle. Next, demonstrate how Eq. (2) can be used to obtain the result. Show
explicitly that Zdistinct can be factorized into a product of single-particle partition functions.

(b) Two identical fermions (don’t worry about spin in this problem, the only restriction is
the Pauli exclusion rule, i.e., two identical fermions cannot occupy the same single-particle
state). Find Zfermion. [Here, identical means indistinguishable.]

(c) Two identical bosons. The point here is that the Pauli exclusion rule does not work for
bosons. Find Zboson.

(d) Look at your results in (a)-(c). One would naturally think that Zfermion 6= Zdistinct because
the Pauli exclusion rule and it is indeed the case. However, as the Pauli exclusion rule does
not apply to bosons and therefore it is not too obvious why Zboson is different from Zdistinct.
From your calculations, explain why Zboson and Zdistinct are different.

Intermission-what’s next: The following two parts serve to illustrate why (sometimes) a
correction factor 1/N ! could turn the distinguishable particles result in part (a) into a useful
result for indistinguishable but classical particles. Part (e) shows that the correction
factor does not always work. Part (f) shows that sometimes it works and why we have
the idea of classical particles.

(e) Many tried to make a correction to the counting of states for distinguishable particles (as in
part (a)) and use the modified result for indistinguishable particles (and hopefully for bosons
and fermions). A standard (and lazy) way is to introduce a factor 1/N ! and thus 1/2! = 1/2
to our two-particle problem. The idea is to correct for the over-counting in 2-particle states
in the distinguishable case. Explain what “over-counting” refers to? Examine whether
a factor 1/2 works in correcting Zdistinct into Zboson or Zfermion? If not, why not?

(f) Sometimes, the correction factor 1/N ! does work! Let’s say we impose an additional condition
that the two particles cannot occupy the same single-particle state into the counting in each
of the three cases in (a)-(c). Show that the correction factor 1/2! works in correcting the
over-counting of states in the distinguishable particle case.
Important remark: This is exactly the 1/N ! that we included in the counting of states
for the classical ideal gas problem (see microcanonical ensemble approach). “Classical” here
means that we don’t need to worry about the particles are bosons or fermions at all (as they
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will not occupy the same state anyway). Thus, the correction factor 1/N ! is also included in
doing classical statistical mechanics within the canonical ensemble.

5.2 (22 points) An alternative way to write down Z for the Fermion and Boson cases in
Problem 5.1.

The physical situation is exactly that in Problem 5.1. We will re-do the two-fermion case and the
two-boson case, but using the occupation number representation. Let’s label the five single-particle
states by 1,2,3,4,5; which have energies 0, 0, ε, ε, 2ε. Let n1 be the number of particles in the state
number 1, n2 be the number of particles in state number 2, and so on. Thus, what you considered
in Problem 5.1 as a 2-particle state can be represented by a string of five occupation numbers
{n1, n2, n3, n4, n5}.

(a) The two particles are two identical fermions (don’t worry about spin, the only restriction
is the Pauli exclusion rule).

The Pauli exclusion rule imposes a restriction on the possible value of the occupation numbers,
i.e., ni = 0 or 1. We only have two particles in total, i.e., we also have the condition∑5
i=1 ni = 2 to satisfy. Explicitly, a list {n1, n2, n3, n4, n5} with ni = 0 or 1 AND

∑5
i=1 ni = 2

represents one possible 2-fermion state. [Pause: Understand this description?]

Your action: Make a table that gives the occupation numbers {n1, n2, n3, n4, n5} for
all possible 2-fermion states. For each state, also give the corresponding energy E. Using
your table, evaluate Zfermion for two identical fermions using Eq. (1).

(b) The two particles are two identical bosons.

For boson, an occupation number ni can be any integer because the Pauli exclusion rule
doesn’t work. But we still have the condition

∑5
i=1 ni = 2 as there are two particles in

total. Explicitly, a list {n1, n2, n3, n4, n5} with ni being integers AND
∑5
i=1 ni = 2 repre-

sents one possible 2-boson state. Make a table that gives the occupation numbers
{n1, n2, n3, n4, n5} for all possible 2-boson states. For each state, also give the corre-
sponding energy E. Using your table, evaluate Zboson for two identical bosons using Eq. (1).

[Remarks: Imagine now there are 1023 fermions/bosons to be filled into densely packed (say) 1030

states (should be infinitely many in principle). Writing down what to be summed up in Z is
troublesome, if not impossible! Should we give up? At least we need to find some ways out. We
could go back to the way formulated in Ch.XIII Sec I (the most probable distribution). Another
way out is to relax the restriction on

∑
i ni = N (thus allowing for fluctuations in the total number

of particles in the system), which is exploited in the Grand Canonical Ensemble theory.]

5.3 (28 points) J = 1 case of the paramagnetic problem: three-level particles

The case of J = 1/2 paramagnetism is discussed in class. It is a realization of two-level systems.
Here you will do the J = 1 case. Here, J is the angular momentum quantum number in atomic
physics. The sequence of arguments is that: (i) the electrons are orbiting around the nucleus
(orbital angular momentum) and they themselves carry an intrinsic spin angular momentum; (ii)
the spin angular momentum and orbital angular momentum will couple through the spin-orbit
interaction, (iii) therefore the combined total angular momentum ~J of all the electrons in an
atom is important, (iv) the magnitude is | ~J | =

√
J(J + 1) h̄ in quantum mechanics with J can

possibly take on values of an integer or a half-integer, (v) the z-component of ~J can only take
on limited discrete values Jz = mJ h̄ with mJ = J, J − 1, . . . ,−J for a given value of J , (vi)
there is a magnetic dipole moment ~µ associated with the total angular momentum ~J because
the electrons are charged, (vii) so each particle/atom becomes a tiny magnet interacting with an
external magnetic field. You do not need this background to work out this problem though.
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Consider N particles/magnetic dipole moments. They are J = 1 particles. Therefore, mJ =
1, 0,−1 and each magnetic dipole moment becomes a three-level particle in the presence of a
external field ~B = Bẑ. Formally, the energies are −gµBB, 0,+gµBB, where g is called the g-
factor. We may call them −ε, 0,+ε in carrying out the calculation and at the end referring back
to ε = gµBB to extract the physical results.

(a) Show that Z = zN for N magnetic moments in a uniform B-field, and calculate the single
particle partition function z, when the system is in equilibrium at a temperature T .

(b) Calculate the mean energy 〈E〉.
(c) Identify the average z-component of a magnetic moment 〈µz〉.
(d) Write down an expression for the magnetization M (defined as the magnetic dipole moment

per unit volume in electromagnetic theory). Discuss the physics in the two limits (what
limits?). In particular, work out how M depends on the temperature in the limit of low
applied field and high temperature and relate your result to the Curie’s law.

5.4 (24 points) Heat capacity of two-dimensional solids due to lattice vibrations

Background: We did the Debye model of heat capacity for three-dimensional solids. The model
is that of N atoms forming a 3D lattice. Since each atom is bonded to its neighbors, the classical
mechanical normal-mode problem is that of balls connected by springs. With each atom oscillating
in three directions, there are 3N normal modes. Each normal mode corresponds to an independent
harmonic oscillator. Therefore, there are 3N oscillators with a spread in the angular frequencies.
The number of normal mode frequencies in the interval ω to ω + dω is D(ω)dω. Debye took
D(ω) ∝ ω2 up to a cutoff Debye frequency ωD and obtained the correct low temperature behavior
of C(T ) ∼ T 3, as observed in experiments.

Here, you are asked to repeat the argument and find out how C(T ) behaves for a strictly two-
dimensional solid. Consider N atoms in a 2D solid. The atoms can only vibrate within the 2D
plane. It is given that in 2D, D(ω) ∝ ω for the low-frequency normal modes.

[Hint: You need NOT re-do the partition function calculation. You may take an appropriate
starting point that can be applied to a collection of oscillators problem as suggested below.]

(a) Debye model in 2D. We will use the expression of the energy of a collection of oscillators:

〈E〉 = EGS +

∫
D(ω)

h̄ω

eβh̄ω − 1
dω (4)

to explore how C(T ) behaves in 2D.

To do that, you need to develop the Debye model in 2D. Writing D(ω) within the Debye
approximation as

D
(2D)
Debye(ω) = Aω , (5)

determine the prefactor A and the cutoff ωD Debye frequency below which Eq (5) is valid.

(b) Work out how 〈E〉 depends on T at low temperatures in 2D. You may look up from integration
tables or on the web a definite integral that appears in the calculation. Hence, find the
temperature dependence of the heat capacity of a 2D solid at low temperatures.

(c) Debye model in d-dimensions. Without going into the details of a d-dimensional solid
but to claim that D(ω) ∝ ωd−1 for the low-frequency normal modes, extract how C(T )
behaves at low temperatures for general dimension d. [Hint: The prefactor and integral
are not important for getting C(T ) at low temperatures.]
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